
Pavla EliáÅ¡ovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6928535/publications.pdf

Version: 2024-02-01

ΡΑνια Εμδιάιονδι

#	Article	IF	CITATIONS
1	A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 2013, 5, 628-633.	13.6	355
2	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	38.1	275
3	Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 2011, 133, 6130-6133.	13.7	208
4	Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45, 3400-3438.	38.1	196
5	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	13.6	186
6	Exploring the "Goldilocks Zone―of Semiconducting Polymer Photocatalysts by Donor–Acceptor Interactions. Angewandte Chemie - International Edition, 2018, 57, 14188-14192.	13.8	118
7	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	13.8	104
8	3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 2013, 25, 542-547.	6.7	76
9	Synthesis of isomorphously substituted extra-large pore UTL zeolites. Journal of Materials Chemistry, 2012, 22, 15793.	6.7	66
10	The Assemblyâ€Disassemblyâ€Organizationâ€Reassembly Mechanism for 3Dâ€2Dâ€3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie - International Edition, 2014, 53, 7048-7052.	13.8	62
11	Measuring the BrÃ,nsted acid strength of zeolites – does it correlate with the O–H frequency shift probed by a weak base?. Physical Chemistry Chemical Physics, 2014, 16, 10129-10141.	2.8	62
12	Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 2015, 243, 134-140.	4.4	57
13	Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions. Catalysis Today, 2012, 179, 35-42.	4.4	55
14	Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Transactions, 2014, 43, 10628.	3.3	52
15	Swelling of MCM-56 and MCM-22P with a new medium — surfactant–tetramethylammonium hydroxide mixtures. Catalysis Today, 2013, 204, 8-14.	4.4	51
16	Post‣ynthesis Stabilization of Germanosilicate Zeolites ITH, IWW, and UTL by Substitution of Ge for Al. Chemistry - A European Journal, 2016, 22, 17377-17386.	3.3	36
17	Theoretical investigation of layered zeolites with MWW topology: MCM-22P vs. MCM-56. Dalton Transactions, 2014, 43, 10443-10450.	3.3	33
18	Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science and Technology, 2018, 8, 4690-4701.	4.1	33

Pavla EliÃiÅiovÃi

#	Article	IF	CITATIONS
19	Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 2014, 227, 37-44.	4.4	29
20	BrÃ,nsted acidity of H-MCM-22 as probed by variable-temperature infrared spectroscopy of adsorbed CO and N2. Catalysis Today, 2014, 227, 45-49.	4.4	22
21	Exploring the "Goldilocks Zone―of Semiconducting Polymer Photocatalysts by Donor–Acceptor Interactions. Angewandte Chemie, 2018, 130, 14384-14388.	2.0	22
22	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. Physical Chemistry Chemical Physics, 2016, 18, 15269-15277.	2.8	21
23	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	4.4	16
24	Mesoporous EU-1 zeolite as a highly active catalyst for ethylbenzene hydroisomerization. Catalysis Science and Technology, 2016, 6, 2735-2741.	4.1	14
25	Germanosilicate UTL and its rich chemistry of solid-state transformations towards IPC-2 (OKO) zeolite. Catalysis Today, 2015, 243, 23-31.	4.4	13
26	Coordination of extraframework Li+ cation in the MCM-22 and MCM-36 zeolite: FTIR study of CO adsorbed. Adsorption, 2013, 19, 455-463.	3.0	9
27	Atomic Force Microscopy of Novel Zeolitic Materials Prepared by Topâ€Down Synthesis and ADOR Mechanism. Chemistry - A European Journal, 2014, 20, 10446-10450.	3.3	9
28	Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P. Dalton Transactions, 2016, 45, 14124-14130.	3.3	9
29	The effect of the zeolite pore size on the Lewis acid strength of extra-framework cations. Physical Chemistry Chemical Physics, 2016, 18, 18063-18073.	2.8	9
30	Impact of pore topology and crystal thickness of nanosponge zeolites on the hydroconversion of ethylbenzene. Catalysis Science and Technology, 2016, 6, 2653-2662.	4.1	9
31	Comparative Study of Vanadium Supported on MCM-36 and MCM-22 and Their Catalytic Perfomance in C3-ODH. Industrial & Engineering Chemistry Research, 2015, 54, 2030-2039.	3.7	7
32	Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods. Catalysis Today, 2019, 324, 123-134.	4.4	5
33	Identification of the most active sites for tetrahydropyranylation in zeolites: MFI as a test case. Catalysis Today, 2020, 345, 165-174.	4.4	4
34	Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P. Materials Advances, 2021, 2, 3862-3870.	5.4	4
35	Zeolites in Pechmann condensation: Impact of the framework topology and type of acid sites. Catalysis Today, 2020, 345, 97-109.	4.4	3
36	Chapter 5. Two-dimensional Zeolites. RSC Catalysis Series, 2017, , 146-193.	0.1	2