Ekihiro Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927950/publications.pdf

Version: 2024-02-01

7496 11608 26,200 162 70 151 citations h-index g-index papers 165 165 165 38090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	TLR4 enhances TGF- \hat{l}^2 signaling and hepatic fibrosis. Nature Medicine, 2007, 13, 1324-1332.	15.2	1,712
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Overlock 1 4.3	0 Tf 50 662 To
4	NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell, 2016, 164, 896-910.	13.5	859
5	Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology, 2015, 61, 1066-1079.	3.6	724
6	New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560, 198-203.	13.7	722
7	Toll-Like Receptor 9 Promotes Steatohepatitis by Induction of Interleukin- $1\hat{l}^2$ in Mice. Gastroenterology, 2010, 139, 323-334.e7.	0.6	640
8	Tollâ€like receptors and adaptor molecules in liver disease: Update. Hepatology, 2008, 48, 322-335.	3.6	614
9	SOCS-1 Participates in Negative Regulation of LPS Responses. Immunity, 2002, 17, 677-687.	6.6	583
10	Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. American Journal of Physiology - Renal Physiology, 2012, 302, G1310-G1321.	1.6	417
11	A Liver Full of JNK: Signaling in Regulation of Cell Function and Disease Pathogenesis, and Clinical Approaches. Gastroenterology, 2012, 143, 307-320.	0.6	414
12	ER Stress Cooperates with Hypernutrition to Trigger TNF-Dependent Spontaneous HCC Development. Cancer Cell, 2014, 26, 331-343.	7.7	412
13	Gene Expression Profiles During Hepatic Stellate Cell Activation in Culture and In Vivo. Gastroenterology, 2007, 132, 1937-1946.	0.6	402
14	Identification of Liver Cancer Progenitors Whose Malignant Progression Depends on Autocrine IL-6 Signaling. Cell, 2013, 155, 384-396.	13.5	384
15	Toll-Like Receptor Signaling in the Liver. Gastroenterology, 2006, 130, 1886-1900.	0.6	377
16	Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. Journal of Physiology, 2012, 590, 447-458.	1.3	361
17	CCR2 promotes hepatic fibrosis in mice. Hepatology, 2009, 50, 185-197.	3.6	359
18	p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell, 2016, 29, 935-948.	7.7	353

#	Article	IF	Citations
19	CCR1 and CCR5 promote hepatic fibrosis in mice. Journal of Clinical Investigation, 2009, 119, 1858-70.	3.9	340
20	Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study. Gastroenterology, 2015, 149, 1784-1793.	0.6	294
21	Correlation between liver histology and novel magnetic resonance imaging in adult patients with nonâ \in alcoholic fatty liver disease â \in " $<$ scp $>$ MRI $<$ /scp $>$ accurately quantifies hepatic steatosis in $<$ scp $>$ NAFLD $<$ /scp $>$. Alimentary Pharmacology and Therapeutics, 2012, 36, 22-29.	1.9	285
22	Critical Roles of Myeloid Differentiation Factor 88-Dependent Proinflammatory Cytokine Release in Early Phase Clearance of <i>Listeria monocytogenes </i> i>in Mice. Journal of Immunology, 2002, 169, 3863-3868.	0.4	265
23	Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences, 2015, 22, 512-518.	1.4	259
24	Gastric Bypass Surgery Improves Metabolic and Hepatic Abnormalities Associated With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2006, 130, 1564-1572.	0.6	258
25	Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Seminars in Liver Disease, 2019, 39, 026-042.	1.8	257
26	Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 844-849.	3.3	247
27	Hepatic Stellate Cells Secrete Angiopoietin 1 That Induces Angiogenesis in Liver Fibrosis. Gastroenterology, 2008, 135, 1729-1738.	0.6	243
28	Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology, 2013, 57, 577-589.	3.6	242
29	Tollâ€like receptors in alcoholic liver disease, nonâ€alcoholic steatohepatitis and carcinogenesis. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 38-42.	1.4	230
30	Lipopolysaccharide-Induced IL-18 Secretion from Murine Kupffer Cells Independently of Myeloid Differentiation Factor 88 That Is Critically Involved in Induction of Production of IL-12 and IL- $\hat{1}^2$. Journal of Immunology, 2001, 166, 2651-2657.	0.4	222
31	Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology, 2014, 59, 483-495.	3.6	220
32	Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1548-1553.	3.3	210
33	Innate immunity in alcoholic liver disease. American Journal of Physiology - Renal Physiology, 2011, 300, G516-G525.	1.6	191
34	<i>Plasmodium</i> â€^ <i>berghei</i> lnfection in Mice Induces Liver Injury by an IL-12- and Toll-Like Receptor/Myeloid Differentiation Factor 88-Dependent Mechanism. Journal of Immunology, 2001, 167, 5928-5934.	0.4	186
35	The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91phox mediate hepatic fibrosis in mice. Hepatology, 2011, 53, 1730-1741.	3.6	176
36	c-Jun N-terminal Kinase-1 From Hematopoietic Cells Mediates Progression From Hepatic Steatosis to Steatohepatitis and Fibrosis in Mice. Gastroenterology, 2009, 137, 1467-1477.e5.	0.6	171

#	Article	IF	CITATIONS
37	ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes To Cells, 2004, 9, 1055-1067.	0.5	169
38	Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology, 2006, 44, 420-429.	3.6	169
39	CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology, 2010, 52, 1390-1400.	3.6	163
40	Liver Damage, Inflammation, and Enhanced Tumorigenesis after Persistent mTORC1 Inhibition. Cell Metabolism, 2014, 20, 133-144.	7.2	162
41	Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 2021, 39, 866-882.e11.	7.7	159
42	Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology, 2005, 41, 443-450.	3.6	157
43	Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science, 2021, 371, .	6.0	154
44	Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell, 2018, 33, 1061-1077.e6.	7.7	151
45	Toll-Like Receptors in Liver Fibrosis: Cellular Crosstalk and Mechanisms. Frontiers in Physiology, 2012, 3, 138.	1.3	144
46	Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. Journal of Clinical Investigation, 2021, 131, .	3.9	144
47	TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. Journal of Clinical Investigation, 2014, 124, 3566-3578.	3.9	142
48	TNFα in Liver Fibrosis. Current Pathobiology Reports, 2015, 3, 253-261.	1.6	141
49	Transforming Growth Factor–β Signaling in Hepatocytes Promotes Hepatic Fibrosis and Carcinogenesis in Mice With Hepatocyte-Specific Deletion of TAK1. Gastroenterology, 2013, 144, 1042-1054.e4.	0.6	131
50	A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. Journal of Hepatology, 2014, 60, 782-791.	1.8	130
51	Effect of Weight Loss on Magnetic Resonance Imaging Estimation of Liver Fat and Volume in Patients With Nonalcoholic Steatohepatitis. Clinical Gastroenterology and Hepatology, 2015, 13, 561-568.e1.	2.4	128
52	Role of Toll-Like Receptors and Their Downstream Molecules in the Development of Nonalcoholic Fatty Liver Disease. Gastroenterology Research and Practice, 2010, 2010, 1-9.	0.7	126
53	Selective inactivation of NF-κB in the liver using NF-κB decoy suppresses CCl ₄ -induced liver injury and fibrosis. American Journal of Physiology - Renal Physiology, 2007, 293, G631-G639.	1.6	117
54	Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology, 2009, 50, 929-938.	3.6	117

#	Article	IF	Citations
55	Toll-Like Receptor Signaling and Liver Fibrosis. Gastroenterology Research and Practice, 2010, 2010, 1-8.	0.7	117
56	Evidence That Cyclin D1 Mediates Both Growth and Proliferation Downstream of TOR in Hepatocytes. Journal of Biological Chemistry, 2003, 278, 3656-3663.	1.6	115
57	TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration. American Journal of Physiology - Renal Physiology, 2015, 309, G30-G41.	1.6	113
58	Roles of caspase-1 in Listeria infection in mice. International Immunology, 2004, 16, 335-343.	1.8	112
59	Toll-Like Receptor 4 Mediates Alcohol-Induced Steatohepatitis Through Bone Marrow-Derived and Endogenous Liver Cells in Mice. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	112
60	Origin of myofibroblasts in liver fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, S17.	3 . 4	99
61	TAK1 regulates hepatic cell survival and carcinogenesis. Journal of Gastroenterology, 2014, 49, 185-194.	2.3	96
62	Inhibition of type I natural killer T cells by retinoids or following sulfatideâ€mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology, 2015, 61, 1357-1369.	3.6	95
63	Hyaluronan synthase $2\hat{a} \in ``mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .$	5.8	91
64	Nrf2 Activation Protects the Liver From Ischemia/Reperfusion Injury in Mice. Annals of Surgery, 2014, 260, 118-127.	2.1	90
65	Transcriptional Repression of the Transforming Growth Factor β (TGF-β) Pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 Enhances TGF-β Signaling in Hepatic Stellate Cells. Journal of Biological Chemistry, 2014, 289, 7082-7091.	1.6	88
66	Fatty Acid Amide Hydrolase Determines Anandamide-induced Cell Death in the Liver. Journal of Biological Chemistry, 2006, 281, 10431-10438.	1.6	86
67	GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nature Communications, 2014, 5, 4451.	5.8	84
68	Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells. Hepatology, 2008, 48, 2016-2026.	3.6	81
69	Alcoholic liver disease: A current molecular and clinical perspective. Liver Research, 2018, 2, 161-172.	0.5	80
70	Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320.	1.8	76
71	Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α. Cell Cycle, 2012, 11, 2681-2690.	1.3	74
72	Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology, 2010, 52, 1420-1430.	3.6	73

#	Article	IF	Citations
73	l-Tryptophan-mediated Enhancement of Susceptibility to Nonalcoholic Fatty Liver Disease Is Dependent on the Mammalian Target of Rapamycin. Journal of Biological Chemistry, 2011, 286, 34800-34808.	1.6	72
74	Distinct proliferative and transcriptional effects of the D-type cyclins in vivo. Cell Cycle, 2008, 7, 2215-2224.	1.3	71
75	Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer. Gastroenterology, 2018, 155, 557-571.e14.	0.6	68
76	Chemokines and Chemokine Receptors in the Development of NAFLD. Advances in Experimental Medicine and Biology, 2018, 1061, 45-53.	0.8	68
77	S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. Journal of Clinical Investigation, 2011, 121, 2821-2832.	3.9	68
78	Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9879-E9888.	3.3	67
79	p38α Inhibits Liver Fibrogenesis and Consequent Hepatocarcinogenesis by Curtailing Accumulation of Reactive Oxygen Species. Cancer Research, 2013, 73, 215-224.	0.4	65
80	Cytokine-Induced Inflammatory Liver Injuries. Current Molecular Medicine, 2003, 3, 545-559.	0.6	56
81	Toll-like receptor 7-mediated type I interferon signaling prevents cholestasis- and hepatotoxin-induced liver fibrosis. Hepatology, 2014, 60, 237-249.	3.6	54
82	Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology, 2007, 46, 1443-1452.	3.6	53
83	TRIF Differentially Regulates Hepatic Steatosis and Inflammation/Fibrosis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 469-483.	2.3	53
84	NODâ€like receptor C4 Inflammasome Regulates the Growth of Colon Cancer Liver Metastasis in NAFLD. Hepatology, 2019, 70, 1582-1599.	3.6	53
85	Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells. PLoS ONE, 2016, 11, e0150893.	1.1	52
86	Akt-mediated Liver Growth Promotes Induction of Cyclin E through a Novel Translational Mechanism and a p21-mediated Cell Cycle Arrest. Journal of Biological Chemistry, 2007, 282, 21244-21252.	1.6	49
87	Nuclear factor κB decoy oligodeoxynucleotides prevent endotoxin-induced fatal liver failure in a murine model. Hepatology, 2003, 38, 335-344.	3.6	48
88	Amino Acids Regulate Hepatocyte Proliferation through Modulation of Cyclin D1 Expression. Journal of Biological Chemistry, 2003, 278, 25853-25858.	1.6	48
89	Investigating the role of the extracellular environment in modulating hepatic stellate cell biology with arrayed combinatorial microenvironments. Integrative Biology (United Kingdom), 2009, 1, 513.	0.6	48
90	The contribution of tollâ€like receptor signaling to the development of liver fibrosis and cancer in hepatocyteâ€specific TAK1â€deleted mice. International Journal of Cancer, 2018, 142, 81-91.	2.3	47

#	Article	IF	Citations
91	Demonstration of cooperative contribution of MET- and EGFR-mediated STAT3 phosphorylation to liver regeneration by exogenous suppressor of cytokine signalings. Journal of Hepatology, 2008, 48, 237-245.	1.8	45
92	Nonâ€alcoholic steatohepatitisâ€induced fibrosis: Tollâ€like receptors, reactive oxygen species and Jun Nâ€ŧerminal kinase. Hepatology Research, 2011, 41, 683-686.	1.8	45
93	Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMPâ€activated protein kinase suppression. FASEB Journal, 2011, 25, 1133-1144.	0.2	45
94	Insulin Resistance Increases MRI-Estimated Pancreatic Fat in Nonalcoholic Fatty Liver Disease and Normal Controls. Gastroenterology Research and Practice, 2013, 2013, 1-8.	0.7	42
95	MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis. Archives of Toxicology, 2018, 92, 2935-2946.	1.9	42
96	Gî±12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration. Journal of Clinical Investigation, 2018, 128, 5587-5602.	3.9	41
97	Role of acid sphingomyelinase of Kupffer cells in cholestatic liver injury in mice. Hepatology, 2010, 51, 237-245.	3.6	39
98	Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signalling. Gut, 2019, 68, 2214-2227.	6.1	37
99	Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Reports, 2021, 36, 109393.	2.9	37
100	Tollâ€like receptor signaling in liver regeneration, fibrosis and carcinogenesis. Hepatology Research, 2011, 41, 597-610.	1.8	34
101	A negative reciprocal regulatory axis between cyclin D1 and HNF4α modulates cell cycle progression and metabolism in the liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17177-17186.	3.3	34
102	Repeated hepatocyte injury promotes hepatic tumorigenesis in hepatitis C virus transgenic mice. Cancer Science, 2003, 94, 679-685.	1.7	32
103	Reciprocal Regulation Between Forkhead Box M1/NFâ€Î°B and Methionine Adenosyltransferase 1A Drives Liver Cancer. Hepatology, 2020, 72, 1682-1700.	3.6	32
104	Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. Journal of Hepatology, 2006, 45, 688-695.	1.8	31
105	Mutation of the 5′-Untranslated Region Stem-Loop Structure Inhibits α1(I) Collagen Expression in Vivo. Journal of Biological Chemistry, 2011, 286, 8609-8619.	1.6	28
106	S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting microRNA 34a/b-methionine adenosyltransferase 2A/2B axis. Oncotarget, 2017, 8, 78851-78869.	0.8	27
107	The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food and Chemical Toxicology, 2020, 143, 111556.	1.8	26
108	LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis. Scientific Reports, 2016, 6, 35610.	1.6	25

#	Article	IF	CITATIONS
109	Murine macrophage autophagy protects against alcohol-induced liver injury by degrading interferon regulatory factor 1 (IRF1) and removing damaged mitochondria. Journal of Biological Chemistry, 2019, 294, 12359-12369.	1.6	25
110	The role of NF-Î ^o B in hepatocarcinogenesis: Promoter or suppressor?. Journal of Hepatology, 2007, 47, 307-309.	1.8	23
111	Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation. Oncotarget, 2016, 7, 47674-47686.	0.8	23
112	Contribution of CD1d-unrestricted hepatic DX5+ NKT cells to liver injury in Plasmodium berghei-parasitized erythrocyte-injected mice. International Immunology, 2004, 16, 787-798.	1.8	22
113	Systemic mediators induce fibrogenic effects in normal liver after partial bile duct ligation. Liver International, 2006, 26, 1138-1147.	1.9	20
114	NCOA5, IL-6, Type 2 Diabetes, and HCC: The Deadly Quartet. Cell Metabolism, 2014, 19, 6-7.	7.2	20
115	Oral administration of PEGylated TLR7 ligand ameliorates alcohol-associated liver disease via the induction of IL-22. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020868118.	3.3	20
116	Hepatocyte TGFâ \in β Signaling Inhibiting WAT Browning to Promote NAFLD and Obesity Is Associated With Letâ \in 7bâ \in 5p. Hepatology Communications, 2022, 6, 1301-1321.	2.0	20
117	Role of innate immune response in liver regeneration. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S57-S58.	1.4	18
118	Toll-Like Receptor Signaling in Liver Diseases. Gastroenterology Research and Practice, 2010, 2010, 1-2.	0.7	18
119	Evidence for a Novel Regulatory Interaction Involving Cyclin D1, Lipid Droplets, Lipolysis, and Cell Cycle Progression in Hepatocytes. Hepatology Communications, 2019, 3, 406-422.	2.0	18
120	Depletion of mitochondrial methionine adenosyltransferase $\hat{l}\pm 1$ triggers mitochondrial dysfunction in alcohol-associated liver disease. Nature Communications, 2022, 13, 557.	5.8	18
121	Cyclin D1 regulates hepatic estrogen and androgen metabolism. American Journal of Physiology - Renal Physiology, 2010, 298, G884-G895.	1.6	16
122	Neurotropin Suppresses Inflammatory Cytokine Expression and Cell Death through Suppression of NF-κB and JNK in Hepatocytes. PLoS ONE, 2014, 9, e114071.	1.1	16
123	Exosome Migration Inhibitory Factor as a Marker and Therapeutic Target for Pancreatic Cancer. Gastroenterology, 2016, 150, 1033-1035.	0.6	15
124	The mitochondrial chaperone Prohibitin 1 negatively regulates interleukin-8 in human liver cancers. Journal of Biological Chemistry, 2019, 294, 1984-1996.	1.6	15
125	Interventional Potential of Recombinant Feline Hepatocyte Growth Factor in a Mouse Model of Non-alcoholic Steatohepatitis. Frontiers in Endocrinology, 2018, 9, 378.	1.5	14
126	The TM6SF2 Variants, Novel Genetic Predictors for Nonalcoholic Steatohepatitis. Gastroenterology, 2015, 148, 252-254.	0.6	13

#	Article	IF	CITATIONS
127	Liver epithelial cells proliferate under hypoxia and protect the liver from ischemic injury via expression of HIF-1 alpha target genes. Surgery, 2012, 152, 869-878.	1.0	12
128	HEDGEHOG Signal in hepatocytes mediates macrophage recruitment: A new mechanism and potential therapeutic target for fatty liver disease. Hepatology, 2016, 63, 1071-1073.	3.6	12
129	TAK1-dependent autophagy: A suppressor of fatty liver disease and hepatic oncogenesis. Molecular and Cellular Oncology, 2014, 1, e968507.	0.3	10
130	MEK inhibition suppresses K-Ras wild-type cholangiocarcinoma in vitro and in vivo via inhibiting cell proliferation and modulating tumor microenvironment. Cell Death and Disease, 2019, 10, 120.	2.7	10
131	TAK1: A Molecular Link Between Liver Inflammation, Fibrosis, Steatosis, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 734749.	1.8	10
132	Microbiome–Obesity–Liver Cancer Interaction: Senescence of Hepatic Stellate Cells and Bile Acids Play New Roles. Gastroenterology, 2014, 146, 860-861.	0.6	9
133	Inhibition of hyaluronan synthesis by 4-methylumbelliferone ameliorates non-alcoholic steatohepatitis in choline-deficient l-amino acid-defined diet-induced murine model. Archives of Pharmacal Research, 2021, 44, 230-240.	2.7	8
134	CYLD and HCC: When Being Too Sensitive to Your Dirty Neighbors Results in Self-Destruction. Cancer Cell, 2012, 21, 711-712.	7.7	7
135	Finding a new role for NEMO: A key player in preventing hepatocyte apoptosis and liver tumorigenesis by inhibiting RIPK1. Hepatology, 2016, 64, 295-297.	3.6	6
136	Hyaluronan synthase 2, a target of miR-200c, promotes carbon tetrachloride-induced acute and chronic liver inflammation via regulation of CCL3 and CCL4. Experimental and Molecular Medicine, 2022, 54, 739-752.	3.2	6
137	MafG, A Novel Target of FXR that Regulates Bile Acid Homeostasis. Gastroenterology, 2015, 149, 1981-1983.	0.6	5
138	MET and epidermal growth factor signaling: The pillars of liver regeneration?. Hepatology, 2016, 64, 1427-1429.	3.6	5
139	Global Spread of a Local Fire: Transmission of Endoplasmic Reticulum Stress via Connexin 43. Cell Metabolism, 2021, 33, 229-230.	7.2	5
140	Deregulated 14-3-3ζ and methionine adenosyltransferase α1 interplay promotes liver cancer tumorigenesis in mice and humans. Oncogene, 2021, 40, 5866-5879.	2.6	5
141	Increase in Alcoholic Hepatitis as an Etiology for Liver Transplantation in the United States: A 2004–2018 Analysis. Transplantation Direct, 2020, 6, e612.	0.8	5
142	Novel Fate-Tracing Strategies Show that Hepatic Stellate Cells Mediate Fibrosis In Vivo. Gastroenterology, 2014, 146, 1823-1825.	0.6	3
143	Neurotropin Inhibits Lipid Accumulation by Maintaining Mitochondrial Function in Hepatocytes via AMPK Activation. Frontiers in Physiology, 2020, 11, 950.	1.3	3
144	A new mechanism of action of glucagonâ€like peptideâ€1 agonist in hepatic steatosis: Promotion of hepatic insulin clearance through induction of carcinoembryonic antigenâ€related cell adhesion molecule 1. Hepatology Communications, 2018, 2, 9-12.	2.0	2

#	Article	IF	CITATIONS
145	Astrocyte elevated gene-1 (AEG-1): a new potential therapeutic target for the treatment of nonalcoholic steatohepatitis (NASH). Hepatobiliary Surgery and Nutrition, 2018, 7, 44-47.	0.7	2
146	Kupffer Cell TLR2/3 Signaling: A Pathway for EGCG AmeliorationÂof Ethanol-Induced Hepatic Injury. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 187-188.	2.3	2
147	An Epigenetic Switch Between Differentiation and Proliferation in Hepatoblastoma. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1875-1876.	2.3	2
148	Toll-like receptor signaling in the liver. , 2006, , 125-142.		1
149	Basic and Clinical Advances in Chronic Liver Inflammation. Mediators of Inflammation, 2016, 2016, 1-1.	1.4	1
150	Acrolein, a New Villain in the Development of Alcoholic Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 544-545.	2.3	1
151	Hepatocyte Death in Liver Inflammation, Fibrosis, and Tumorigenesis. , 2017, , 219-235.		1
152	Crossing the Rubicon: Adipose Tissue Autophagy Breaks Out NAFLD. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1877-1878.	2.3	1
153	An Intestine-Derived HDL as a Novel Regulator of the Activity of Gut-Derived LPS: Ushering in a New Era of Research on the Gut-Liver Axis. Gastroenterology, 2022, 162, 651-652.	0.6	1
154	Serum Glial Cell Line-Derived Neurotrophic Factor (sGDNF) Is a Novel Biomarker in Predicting Cirrhosis in Patients with Chronic Hepatitis B. Canadian Journal of Gastroenterology and Hepatology, 2022, 2022, 1-9.	0.8	1
155	Extracellular matrix combinations differentially modulate hepatic stellate cell biology. Digestive and Liver Disease, 2008, 40, A132-A133.	0.4	0
156	Apoptosis in Liver Injury and Liver Diseases. , 2009, , 547-564.		0
157	CCR2 Promotes the Progression of NASH in Mice. Gastroenterology, 2011, 140, S-904-S-905.	0.6	0
158	Reply. Hepatology, 2014, 60, 1114-1115.	3.6	0
159	Sa1651 TLR7 Signaling As a Mechanism and Therapeutic Target for Mouse Model of Alcoholic Hepatitis. Gastroenterology, 2016, 150, S1086.	0.6	0
160	Nuclear Receptors: Opening Up New Avenues of Pediatric Fatty Liver Research. Hepatology Communications, 2018, 2, 1157-1159.	2.0	0
161	Tumor Suppressor Down-Regulation Promotes Hepatocyte Proliferation: A New GANKster on the Block. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 345-346.	2.3	0
162	Intestinal Lipolysis Mitigates Nonalcoholic Fatty Liver Disease: New Roles for Carboxylesterase 2c in the Intestine. Hepatology Communications, 2019, 3, 177-179.	2.0	0