## Vahid Joekar-Niasar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927925/publications.pdf Version: 2024-02-01



VAHID LOEKAR-NIASAR

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Impact of Displacement Direction Relative to Heterogeneity on Averaged Capillary Pressureâ€6aturation<br>Curves. Water Resources Research, 2022, 58, .                                                                         | 1.7 | 5         |
| 2  | Enhanced thermal fingering in a shear-thinning fluid flow through porous media: Dynamic pore network modeling. Physics of Fluids, 2022, 34, .                                                                                  | 1.6 | 9         |
| 3  | Scaling CO2 convection in confined aquifers: Effects of dispersion, permeability anisotropy and geochemistry. Advances in Water Resources, 2022, 164, 104191.                                                                  | 1.7 | 7         |
| 4  | Analytical Solution for Predicting Salt Precipitation During CO <sub>2</sub> Injection Into Saline<br>Aquifers in Presence of Capillary Pressure. Water Resources Research, 2022, 58, .                                        | 1.7 | 5         |
| 5  | Utilization of 3D printed carbon gas diffusion layers in polymer electrolyte membrane fuel cells.<br>International Journal of Hydrogen Energy, 2022, 47, 23393-23410.                                                          | 3.8 | 16        |
| 6  | Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counterâ€Current<br>Transport and Nonâ€Linear Diffusion. Water Resources Research, 2022, 58, .                                                | 1.7 | 3         |
| 7  | Quantifying the impacts of groundwater abstraction on Ganges river water infiltration into shallow<br>aquifers under the rapidly developing city of Patna, India. Journal of Hydrology: Regional Studies,<br>2022, 42, 101133. | 1.0 | 4         |
| 8  | Nanoparticle transport within non-Newtonian fluid flow in porous media. Physical Review E, 2022,<br>106, .                                                                                                                     | 0.8 | 2         |
| 9  | Effective viscosity and Reynolds number of non-Newtonian fluids using Meter model. Rheologica Acta, 2021, 60, 11-21.                                                                                                           | 1.1 | 25        |
| 10 | Experimental and Modelling Study of Gravity Drainage in a Three-Block System. Transport in Porous<br>Media, 2021, 136, 471-494.                                                                                                | 1.2 | 5         |
| 11 | Lattice-Boltzmann simulation of dissolution of carbonate rock during CO2-saturated brine injection.<br>Chemical Engineering Journal, 2021, 408, 127235.                                                                        | 6.6 | 30        |
| 12 | An empirical equation for shear viscosity of shear thickening fluids. Journal of Molecular Liquids, 2021, 325, 115220.                                                                                                         | 2.3 | 34        |
| 13 | Dynamics of CO <sub>2</sub> Densityâ€Driven Flow in Carbonate Aquifers: Effects of Dispersion and<br>Geochemistry. Water Resources Research, 2021, 57, e2020WR027829.                                                          | 1.7 | 18        |
| 14 | <i>Operando</i> Liquid Pressure Determination in Polymer Electrolyte Fuel Cells. ACS Applied<br>Materials & Interfaces, 2021, 13, 34003-34011.                                                                                 | 4.0 | 15        |
| 15 | Upscaling non-Newtonian rheological fluid properties from pore-scale to Darcy's scale. Chemical<br>Engineering Science, 2021, 239, 116638.                                                                                     | 1.9 | 9         |
| 16 | Insights into the nano-structure of oil-brine-kaolinite interfaces: Molecular dynamics and implications for enhanced oil recovery. Applied Clay Science, 2021, 211, 106203.                                                    | 2.6 | 10        |
| 17 | Pore-scale simulation of viscous instability for non-Newtonian two-phase flow in porous media.<br>Journal of Non-Newtonian Fluid Mechanics, 2021, 296, 104628.                                                                 | 1.0 | 10        |
| 18 | Process-Dependent Solute Transport in Porous Media. Transport in Porous Media, 2021, 140, 421-435.                                                                                                                             | 1.2 | 7         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Integral effects of initial fluids configuration and wettability alteration on remaining saturation: characterization with X-ray micro-computed tomography. Fuel, 2021, 306, 121717.                                                  | 3.4 | 8         |
| 20 | Pore network and Darcy scale modelling of DNAPL remediation using ethanol flushing: Study of physical properties in DNAPL remediation. Journal of Contaminant Hydrology, 2021, 243, 103886.                                           | 1.6 | 2         |
| 21 | Fluid–Fluid Interfacial Effects in Multiphase Flow during Carbonated Waterflooding in Sandstone:<br>Application of X-ray Microcomputed Tomography and Molecular Dynamics. ACS Applied Materials &<br>Interfaces, 2021, 13, 5731-5740. | 4.0 | 7         |
| 22 | Discrete-Particle Model to Optimize Operational Conditions of Proton-Exchange Membrane Fuel-Cell<br>Gas Channels. ACS Applied Energy Materials, 2021, 4, 10514-10533.                                                                 | 2.5 | 4         |
| 23 | Electrostatic Characterization of the â^'COOH–Brine–Clay System: Implications for Wettability<br>Alteration during Low Salinity Waterflooding in Sandstone Reservoirs. Energy & Fuels, 2021, 35,<br>16599-16606.                      | 2.5 | 3         |
| 24 | Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging. Science<br>Advances, 2021, 7, eabj0960.                                                                                                    | 4.7 | 14        |
| 25 | Comparison of modified effective-medium approximation to pore-network theory for relative permeabilities. Journal of Petroleum Science and Engineering, 2020, 184, 106594.                                                            | 2.1 | 5         |
| 26 | Enhancing the Performance of Fuel Cell Gas Diffusion Layers Using Ordered Microstructural Design.<br>Journal of the Electrochemical Society, 2020, 167, 013520.                                                                       | 1.3 | 31        |
| 27 | Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion. Journal of Colloid and Interface Science, 2020, 561, 162-172.                                             | 5.0 | 12        |
| 28 | Interplay of biofilm growth, NAPL biodegradation and micro-scale heterogeneity in natural<br>attenuation of aquifers delineated by pore-network modelling. Advances in Water Resources, 2020,<br>145, 103750.                         | 1.7 | 6         |
| 29 | Detecting pH and Ca2+ increase during low salinity waterflooding in carbonate reservoirs:<br>Implications for wettability alteration process. Journal of Molecular Liquids, 2020, 317, 114003.                                        | 2.3 | 28        |
| 30 | A greyscale volumetric lattice Boltzmann method for upscaling pore-scale two-phase flow. Advances in Water Resources, 2020, 144, 103711.                                                                                              | 1.7 | 17        |
| 31 | Transition From Viscous Fingering to Capillary Fingering: Application of GPUâ€Based Fully Implicit<br>Dynamic Pore Network Modeling. Water Resources Research, 2020, 56, e2020WR028149.                                               | 1.7 | 31        |
| 32 | Comments on the paper "experimental study and modelling on diffusion coefficient of CO2 in water―<br>by H. Ahmadi etÂal. (2020). Fluid Phase Equilibria, 2020, 524, 112791.                                                           | 1.4 | 4         |
| 33 | Impact of Oil Polarity on the Mixing Time at the Pore Scale in Low Salinity Waterflooding. Energy<br>& Fuels, 2020, 34, 12247-12259.                                                                                                  | 2.5 | 23        |
| 34 | Direct characterization of solute transport in unsaturated porous media using fast X-ray<br>synchrotron microtomography. Proceedings of the National Academy of Sciences of the United States<br>of America, 2020, 117, 23443-23449.  | 3.3 | 56        |
| 35 | Unravelling Effects of the Poreâ€Size Correlation Length on the Twoâ€Phase Flow and Solute Transport<br>Properties: GPUâ€based Poreâ€Network Modeling. Water Resources Research, 2020, 56, e2020WR027403.                             | 1.7 | 21        |
| 36 | Two-phase flow dynamics in a gas diffusion layer - gas channel - microporous layer system. Journal of<br>Power Sources, 2020, 471, 228427.                                                                                            | 4.0 | 69        |

VAHID JOEKAR-NIASAR

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Impact of pore morphology on two-phase flow dynamics under wettability alteration. Fuel, 2020, 268, 117315.                                                                          | 3.4 | 32        |
| 38 | Signature of Geochemistry on Densityâ€Ðriven CO Mixing in Sandstone Aquifers. Water Resources<br>Research, 2020, 56, e2019WR026060.                                                  | 1.7 | 18        |
| 39 | Impact of Microheterogeneity on Upscaling Reactive Transport in Geothermal Energy. ACS Earth and Space Chemistry, 2019, 3, 2045-2057.                                                | 1.2 | 25        |
| 40 | Pore-network modelling of non-Darcy flow through heterogeneous porous media. Advances in Water<br>Resources, 2019, 131, 103378.                                                      | 1.7 | 26        |
| 41 | Effect of divalent ions on the dynamics of disjoining pressure induced by salinity modification.<br>Journal of Molecular Liquids, 2019, 291, 111276.                                 | 2.3 | 14        |
| 42 | Novel insights into pore-scale dynamics of wettability alteration during low salinity waterflooding.<br>Scientific Reports, 2019, 9, 9257.                                           | 1.6 | 62        |
| 43 | Effects of Pore cale Heterogeneity on Macroscopic NAPL Dissolution Efficiency: A Two cale<br>Numerical Simulation Study. Water Resources Research, 2019, 55, 8779-8799.              | 1.7 | 21        |
| 44 | Saturation Dependence of Nonâ€Fickian Transport in Porous Media. Water Resources Research, 2019, 55,<br>1153-1166.                                                                   | 1.7 | 35        |
| 45 | Pressure development in charged porous media with heterogeneous pore sizes. Advances in Water Resources, 2019, 128, 193-205.                                                         | 1.7 | 6         |
| 46 | An efficient coupling of free flow and porous media flow using the pore-network modeling approach.<br>Journal of Computational Physics: X, 2019, 1, 100011.                          | 1.1 | 22        |
| 47 | Coupled Processes in Charged Porous Media: From Theory to Applications. Transport in Porous Media, 2019, 130, 183-214.                                                               | 1.2 | 14        |
| 48 | Nonmonotonic Effects of Salinity on Wettability Alteration and Twoâ€Phase Flow Dynamics in PDMS<br>Micromodels. Water Resources Research, 2019, 55, 9826-9837.                       | 1.7 | 16        |
| 49 | Editorial to the Special Issue: Uncertainty Quantification and Multiple-Scale Methods for Porous<br>Media. Transport in Porous Media, 2019, 126, 1-4.                                | 1.2 | 0         |
| 50 | Soil Chemistry Aspects of Predicting Future Phosphorus Requirements in Subâ€ <del>S</del> aharan Africa. Journal<br>of Advances in Modeling Earth Systems, 2019, 11, 327-337.        | 1.3 | 9         |
| 51 | Pore-scale insights into transport and mixing in steady-state two-phase flow in porous media.<br>International Journal of Multiphase Flow, 2018, 109, 51-62.                         | 1.6 | 41        |
| 52 | Efficiency of phosphorus resource use in Africa as defined by soil chemistry and the impact on crop production. Energy Procedia, 2017, 123, 97-104.                                  | 1.8 | 10        |
| 53 | Role of corner interfacial area in uniqueness of capillary pressure-saturation- interfacial area relation under transient conditions. Advances in Water Resources, 2017, 107, 10-21. | 1.7 | 19        |
| 54 | Hydro-dynamic Solute Transport under Two-Phase Flow Conditions. Scientific Reports, 2017, 7, 6624.                                                                                   | 1.6 | 36        |

VAHID JOEKAR-NIASAR

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions. Scientific Reports, 2017, 7, 4584.                                              | 1.6 | 80        |
| 56 | Insights into the Impact of Temperature on the Wettability Alteration by Low Salinity in Carbonate Rocks. Energy & Fuels, 2017, 31, 7839-7853.                                            | 2.5 | 141       |
| 57 | Pore-scale and continuum simulations of solute transport micromodel benchmark experiments.<br>Computational Geosciences, 2016, 20, 857-879.                                               | 1.2 | 50        |
| 58 | Effects of intermediate wettability on entry capillary pressure in angular pores. Journal of Colloid and Interface Science, 2016, 473, 34-43.                                             | 5.0 | 64        |
| 59 | A transport phase diagram for pore-level correlated porous media. Advances in Water Resources, 2016, 92, 23-29.                                                                           | 1.7 | 29        |
| 60 | Pore-scale modelling techniques: balancing efficiency, performance, and robustness. Computational<br>Geosciences, 2016, 20, 773-775.                                                      | 1.2 | 4         |
| 61 | Critical Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New Paradigm.<br>Environmental Science & Technology, 2016, 50, 4384-4392.                                        | 4.6 | 67        |
| 62 | Nonmonotonic Pressure Field Induced by Ionic Diffusion in Charged Thin Films. Industrial &<br>Engineering Chemistry Research, 2016, 55, 6227-6235.                                        | 1.8 | 47        |
| 63 | Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2â€Ð pore network.<br>Water Resources Research, 2015, 51, 8517-8528.                                          | 1.7 | 22        |
| 64 | Effects of flow history on oil entrapment in porous media: An experimental study. AICHE Journal, 2015,<br>61, 1385-1390.                                                                  | 1.8 | 18        |
| 65 | Kinetics of Low-Salinity-Flooding Effect. SPE Journal, 2015, 20, 8-20.                                                                                                                    | 1.7 | 196       |
| 66 | Micromodel study of twoâ€phase flow under transient conditions: Quantifying effects of specific<br>interfacial area. Water Resources Research, 2014, 50, 8125-8140.                       | 1.7 | 74        |
| 67 | Non-equilibrium in multiphase multicomponent flow in porous media: An evaporation example.<br>International Journal of Heat and Mass Transfer, 2014, 74, 128-142.                         | 2.5 | 26        |
| 68 | Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects. Computational Geosciences, 2013, 17, 497-513.                   | 1.2 | 4         |
| 69 | Trapping and hysteresis in twoâ€phase flow in porous media: A poreâ€network study. Water Resources<br>Research, 2013, 49, 4244-4256.                                                      | 1.7 | 77        |
| 70 | On the fabrication of PDMS micromodels by rapid prototyping, and their use in twoâ€phase flow studies. Water Resources Research, 2013, 49, 2056-2067.                                     | 1.7 | 76        |
| 71 | Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A<br>Review. Critical Reviews in Environmental Science and Technology, 2012, 42, 1895-1976. | 6.6 | 285       |
| 72 | Pore-Scale Modeling of Multiphase Flow and Transport: Achievements and Perspectives. Transport in<br>Porous Media, 2012, 94, 461-464.                                                     | 1.2 | 30        |

VAHID JOEKAR-NIASAR

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under<br>Non-Equilibrium Conditions in Two-Phase Porous Media Flow. Transport in Porous Media, 2012, 94,<br>465-486. | 1.2 | 56        |
| 74 | Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling.<br>Vadose Zone Journal, 2012, 11, vzj2011.0128.                                                     | 1.3 | 8         |
| 75 | A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab on A<br>Chip, 2012, 12, 3413.                                                                             | 3.1 | 61        |
| 76 | Specific interfacial area: The missing state variable in twoâ€phase flow equations?. Water Resources<br>Research, 2011, 47, .                                                                           | 1.7 | 55        |
| 77 | Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling.<br>International Journal of Multiphase Flow, 2011, 37, 198-214.                                      | 1.6 | 106       |
| 78 | Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. Journal of Fluid Mechanics, 2010, 655, 38-71.                                            | 1.4 | 226       |
| 79 | Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resources Research, 2010, 46, .                                        | 1.7 | 105       |
| 80 | Assessment of nitrate contamination in unsaturated zone of urban areas: The case study of Tehran,<br>Iran. Environmental Geology, 2009, 57, 1785-1798.                                                  | 1.2 | 30        |
| 81 | Simulating drainage and imbibition experiments in a highâ€porosity micromodel using an unstructured pore network model. Water Resources Research, 2009, 45, .                                           | 1.7 | 77        |
| 82 | Insights into the Relationships Among Capillary Pressure, Saturation, Interfacial Area and Relative<br>Permeability Using Pore-Network Modeling. Transport in Porous Media, 2008, 74, 201-219.          | 1.2 | 210       |