
Vassiliki A Iconomidou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Third dose of the <scp>BNT162b2</scp> vaccine results in very high levels of neutralizing antibodies against <scp>SARSâ€CoV</scp> â€2: Results of a prospective study in 150 health professionals in Greece. American Journal of Hematology, 2022, 97, .	4.1	10
2	Clusterin in Alzheimer's disease: An amyloidogenic inhibitor of amyloid formation?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166384.	3.8	11
3	Arabidopsis thaliana Plant Natriuretic Peptide Active Domain Forms Amyloid-like Fibrils in a pH-Dependent Manner. Plants, 2022, 11, 9.	3.5	2
4	LiGIoNs: A computational method for the detection and classification of ligand-gated ion channels. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183956.	2.6	1
5	SARS-CoV-2 Neutralizing Antibodies Kinetics Postvaccination in Cancer Patients under Treatment with Immune Checkpoint Inhibition. Cancers, 2022, 14, 2796.	3.7	9
6	SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms, 2022, 10, 1430.	3.6	0
7	Approaches in Gene Coexpression Analysis in Eukaryotes. Biology, 2022, 11, 1019.	2.8	4
8	Exploring the conservation of Alzheimer-related pathways between H. sapiens and C. elegans: a network alignment approach. Scientific Reports, 2021, 11, 4572.	3.3	10
9	Linear B-Cell Epitope Prediction for In Silico Vaccine Design: A Performance Review of Methods Available via Command-Line Interface. International Journal of Molecular Sciences, 2021, 22, 3210.	4.1	60
10	From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers, 2021, 13, 2024.	3.7	5
11	PerMemDB: A database for eukaryotic peripheral membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183076.	2.6	14
12	Extended Human G-Protein Coupled Receptor Network: Cell-Type-Specific Analysis of G-Protein Coupled Receptor Signaling Pathways. Journal of Proteome Research, 2020, 19, 511-524.	3.7	12
13	Investigation of the interaction of DAD1-LIKE LIPASE 3 (DALL3) with Selenium Binding Protein 1 (SBP1) in Arabidopsis thaliana. Plant Science, 2020, 291, 110357.	3.6	9
14	Visualization and analysis of the interaction network of proteins associated with blood-cell targeting autoimmune diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165714.	3.8	3
15	ANTISOMA: A Computational Pipeline for the Reduction of the Aggregation Propensity of Monoclonal Antibodies. Advances in Experimental Medicine and Biology, 2020, 1194, 359-371.	1.6	0
16	The amyloid interactome 2: mapping protein aggregation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 142-143.	3.0	1
17	Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana. Plant Science, 2019, 281, 102-112.	3.6	8
18	Delving into the amyloidogenic core of human leukocyte chemotactic factor 2. Journal of Structural Biology, 2019, 207, 260-269.	2.8	7

#	Article	IF	CITATIONS
19	AmyCo: the amyloidoses collection. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 112-117.	3.0	12
20	Hidden Aggregation Hot-Spots on Human Apolipoprotein E: A Structural Study. International Journal of Molecular Sciences, 2019, 20, 2274.	4.1	9
21	The gramâ€negative outer membrane modeler: Automated building of lipopolysaccharideâ€rich bacterial outer membranes in four force fields. Journal of Computational Chemistry, 2019, 40, 1727-1734.	3.3	17
22	Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. International Journal of Molecular Sciences, 2019, 20, 937.	4.1	8
23	Analysis of Single-Nucleotide Polymorphisms in Human Voltage-Gated Ion Channels. Journal of Proteome Research, 2019, 18, 2310-2320.	3.7	3
24	Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. International Journal of Molecular Sciences, 2019, 20, 1291.	4.1	47
25	αCGRP, another amyloidogenic member of the CGRP family. Journal of Structural Biology, 2018, 203, 27-36.	2.8	6
26	Hexapeptide Tandem Repeats Dictate the Formation of Silkmoth Chorion, a Natural Protective Amyloid. Journal of Molecular Biology, 2018, 430, 3774-3783.	4.2	10
27	Unraveling the aggregation propensity of human insulin Câ€peptide. Biopolymers, 2017, 108, e22882.	2.4	3
28	Tracking the amyloidogenic core of IAPP amyloid fibrils: Insights from micro-Raman spectroscopy. Journal of Structural Biology, 2017, 199, 140-152.	2.8	9
29	Exploring Amyloidogenicity of Clusterin: A Structural and Bioinformatics Analysis. Advances in Experimental Medicine and Biology, 2017, 989, 93-107.	1.6	3
30	Mining databases for protein aggregation: a review. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 143-152.	3.0	11
31	The amyloid interactome: Exploring protein aggregation. PLoS ONE, 2017, 12, e0173163.	2.5	25
32	Identification of an amyloid fibril forming segment of human Pmel17 repeat domain (<scp>RPT</scp>) Tj ETQqC	0 0 rgBT	/Overlock 10
33	Intrinsic aggregation propensity of the CsgB nucleator protein is crucial for curli fiber formation. Journal of Structural Biology, 2016, 195, 179-189.	2.8	18
34	A common â€`aggregationâ€prone' interface possibly participates in the selfâ€assembly of human zona pellucida proteins. FEBS Letters, 2016, 590, 619-630.	2.8	30
35	A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. Journal of Computer-Aided Molecular Design, 2016, 30, 153-164.	2.9	17
36	Chameleon â€~aggregation-prone' segments of apoA-I: A model of amyloid fibrils formed in apoA-I	7.5	29

amyloidosis. International Journal of Biological Macromolecules, 2015, 79, 711-718. 36 ap

#	Article	IF	CITATIONS
37	Exploring the â€~aggregation-prone' core of human Cystatin C: A structural study. Journal of Structural Biology, 2015, 191, 272-280.	2.8	26
38	Structural studies and cytotoxicity assays of "aggregationâ€prone―IAPP _{8–16} and its non―myloidogenic variants suggest its important role in fibrillogenesis and cytotoxicity of human amylin. Biopolymers, 2015, 104, 196-205.	2.4	19
39	The pentapeptide LQVVR plays a pivotal role in human cystatin C fibrillization. FEBS Letters, 2015, 589, 159-164.	2.8	15
40	Structural studies of "aggregationâ€prone―peptideâ€analogues of teleostean egg chorion ZPB proteins. Biopolymers, 2014, 102, 427-436.	2.4	16
41	An Nâ€terminal proâ€atrial natriuretic peptide (NTâ€proANP) â€~aggregationâ€prone' segment involved in isolated atrial amyloidosis. FEBS Letters, 2014, 588, 52-57.	2.8	25
42	Identification of a novel â€~aggregationâ€prone'/â€~amyloidogenic determinant' peptide in the sequence the highly amyloidogenic human calcitonin. FEBS Letters, 2013, 587, 569-574.	of 2.8	18
43	LepChorionDB, a database of Lepidopteran chorion proteins and a set of tools useful for the identification of chorion proteins in Lepidopteran proteomes. Insect Biochemistry and Molecular Biology, 2013, 43, 189-196.	2.7	8
44	A Consensus Method for the Prediction of â€~Aggregation-Prone' Peptides in Globular Proteins. PLoS ONE, 2013, 8, e54175.	2.5	255
45	Structural Analysis of Peptide-Analogues of Human Zona Pellucida ZP1 Protein with Amyloidogenic Properties: Insights into Mammalian Zona Pellucida Formation. PLoS ONE, 2013, 8, e73258.	2.5	33
46	An amyloidogenic determinant in nâ€ŧerminal proâ€brain natriuretic peptide (ntâ€probnp): Implications for cardiac amyloidoses. Biopolymers, 2012, 98, 67-75.	2.4	10
47	The silkmoth eggshell as a natural amyloid shield for the safe development of insect oocyte and embryo: Insights from studies of silkmoth chorion protein peptideâ€analogues of the B famil. Biopolymers, 2011, 96, 723-733.	2.4	12
48	A possible structural model of members of the CPF family of cuticular proteins implicating binding to components other than chitin. Journal of Insect Physiology, 2010, 56, 1420-1426.	2.0	17
49	Amyloidogenic determinants are usually not buried. BMC Structural Biology, 2009, 9, 44.	2.3	131
50	Prothymosin α immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a β-sheet conformation in a sequence-specific manner. Molecular Immunology, 2009, 46, 784-792.	2.2	34
51	Natural Protective Amyloids. Current Protein and Peptide Science, 2008, 9, 291-309.	1.4	78
52	Drosophila cuticular proteins with the R&R Consensus: Annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochemistry and Molecular Biology, 2007, 37, 754-760.	2.7	135
53	Dogfish egg case structural studies by ATR FT-IR and FT-Raman spectroscopy. International Journal of Biological Macromolecules, 2007, 41, 102-108.	7.5	13
54	Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins. International Journal of Biological Macromolecules, 2007, 41, 295-300.	7.5	70

#	Article	IF	CITATIONS
55	Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. Journal of Structural Biology, 2006, 156, 480-488.	2.8	39
56	Unique features of the structural model of â€~hard' cuticle proteins: implications for chitin–protein interactions and cross-linking in cuticle. Insect Biochemistry and Molecular Biology, 2005, 35, 553-560.	2.7	85
57	FT-Raman spectroscopy as diagnostic tool of Congo red binding to amyloids. Biopolymers, 2003, 72, 185-192.	2.4	12
58	A structural model of the chitin-binding domain of cuticle proteins. Insect Biochemistry and Molecular Biology, 2002, 32, 1577-1583.	2.7	81
59	"Soft―cuticle protein secondary structure as revealed by FT-Raman, ATR FT-IR and CD spectroscopy. Insect Biochemistry and Molecular Biology, 2001, 31, 877-885.	2.7	48
60	Amyloid-like fibrils from an 18-residue peptide analogue of a part of the central domain of the B-family of silkmoth chorion proteins. FEBS Letters, 2001, 499, 268-273.	2.8	30
61	Amyloids protect the silkmoth oocyte and embryo. FEBS Letters, 2000, 479, 141-145.	2.8	180
62	Is β-pleated sheet the molecular conformation which dictates formation of helicoidal cuticle?. Insect Biochemistry and Molecular Biology, 1999, 29, 285-292.	2.7	48