
Rafael Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/692788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. International Journal of Molecular Sciences, 2022, 23, 1873.	1.8	16
2	Heterofunctional carbosilane polyphenolic dendrons: new antioxidants platforms. RSC Advances, 2022, 12, 10280-10288.	1.7	2
3	Safety of G2-S16 Polyanionic Carbosilane Dendrimer as Possible HIV-1 Vaginal Microbicide. International Journal of Molecular Sciences, 2022, 23, 2565.	1.8	1
4	Prevention of Herpesviridae Infections by Cationic PEGylated Carbosilane Dendrimers. Pharmaceutics, 2022, 14, 536.	2.0	1
5	Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. International Journal of Nanomedicine, 2022, Volume 17, 1139-1154.	3.3	7
6	Safety and efficacy of G2-S16 dendrimer as microbicide in healthy human vaginal tissue explants. Journal of Nanobiotechnology, 2022, 20, 151.	4.2	2
7	Bacteria capture with magnetic nanoparticles modified with cationic carbosilane dendritic systems. Materials Science and Engineering C, 2022, 133, 112622.	3.8	12
8	Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells Cultured in 3D Spheroids. Cells, 2022, 11, 1697.	1.8	1
9	The effect of surface modification of dendronized gold nanoparticles on activation and release of pyroptosis-inducing pro-inflammatory cytokines in presence of bacterial lipopolysaccharide in monocytes. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112652.	2.5	3
10	Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of Molecular Liquids, 2021, 324, 114726.	2.3	15
11	PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. Journal of Physical Chemistry B, 2021, 125, 1196-1206.	1.2	8
12	Nanotechnology against human cytomegalovirus in vitro: polyanionic carbosilane dendrimers as antiviral agents. Journal of Nanobiotechnology, 2021, 19, 65.	4.2	9
13	Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. Journal of Biotechnology, 2021, 331, 48-52.	1.9	3
14	Promising PEGylated cationic dendrimers for delivery of miRNAs as a possible therapy against HIV-1 infection. Journal of Nanobiotechnology, 2021, 19, 158.	4.2	10
15	Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells. International Journal of Molecular Sciences, 2021, 22, 7097.	1.8	11
16	Eradication of Candida albicans Biofilm Viability: In Vitro Combination Therapy of Cationic Carbosilane Dendrons Derived from 4-Phenylbutyric Acid with AgNO3 and EDTA. Journal of Fungi (Basel, Switzerland), 2021, 7, 574.	1.5	8
17	G2-S16 Polyanionic Carbosilane Dendrimer Can Reduce HIV-1 Reservoir Formation by Inhibiting Macrophage Cell to Cell Transmission. International Journal of Molecular Sciences, 2021, 22, 8366.	1.8	1
18	Prospects of Cationic Carbosilane Dendronized Gold Nanoparticles as Non-viral Vectors for Delivery of Anticancer siRNAs siBCL-xL and siMCL-1. Pharmaceutics, 2021, 13, 1549.	2.0	10

#	Article	IF	CITATIONS
19	Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. Journal of Inorganic Biochemistry, 2021, 223, 111540.	1.5	16
20	Electroanalytical study of five carbosilane dendrimers at the interface between two immiscible electrolyte solutions. Analyst, The, 2021, 146, 1376-1385.	1.7	2
21	Dendronized Gold Nanoparticles as Carriers for gp160 (HIV-1) Peptides: Biophysical Insight into Complex Formation. Langmuir, 2021, 37, 1542-1550.	1.6	10
22	Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules, 2021, 22, 4582-4591.	2.6	12
23	Functionalization of silica with amine and ammonium alkyl chains, dendrons and dendrimers: Synthesis and antibacterial properties. Materials Science and Engineering C, 2020, 109, 110526.	3.8	14
24	Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. International Journal of Pharmaceutics, 2020, 573, 118867.	2.6	9
25	Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants, 2020, 9, 993.	2.2	20
26	pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. Nanomaterials, 2020, 10, 1899.	1.9	19
27	Evaluation of pH-dependent amphiphilic carbosilane dendrons in micelle formation, drug loading and HIV-1 infection. Organic and Biomolecular Chemistry, 2020, 18, 9639-9652.	1.5	4
28	Dendritic Nanotheranostic for the Delivery of Infliximab: A Potential Carrier in Rheumatoid Arthritis Therapy. International Journal of Molecular Sciences, 2020, 21, 9101.	1.8	6
29	Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics, 2020, 12, 698.	2.0	19
30	Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells. Pharmaceutics, 2020, 12, 727.	2.0	17
31	Heterofunctional ruthenium(II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. European Journal of Medicinal Chemistry, 2020, 207, 112695.	2.6	7
32	Silver (I) N-Heterocyclic Carbenes Carbosilane Dendritic Systems and Their Imidazolium-Terminated Analogues as Antibacterial Agents: Study of Their Mode of Action. Pharmaceutics, 2020, 12, 968.	2.0	9
33	New synthetic procedure for the antiviral sulfonate carbosilane dendrimer G2-S16 and its fluorescein-labelled derivative for biological studies. RSC Advances, 2020, 10, 20083-20088.	1.7	6
34	Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. Biomolecules, 2020, 10, 427.	1.8	9
35	New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. Molecules, 2020, 25, 807.	1.7	6
36	Ultrastructural Study of Acanthamoeba polyphaga Trophozoites and Cysts Treated In Vitro with Cationic Carbosilane Dendrimers. Pharmaceutics, 2020, 12, 565.	2.0	12

#	Article	IF	CITATIONS
37	Silver Nanoparticles Surface-Modified with Carbosilane Dendrons as Carriers of Anticancer siRNA. International Journal of Molecular Sciences, 2020, 21, 4647.	1.8	20
38	Cationic Carbosilane Dendritic Systems as Promising Antiâ€Amyloid Agents in Typeâ€2 Diabetes. Chemistry - A European Journal, 2020, 26, 7609-7621.	1.7	10
39	Cyclopentadienyl ruthenium(II) carbosilane metallodendrimers as a promising treatment against advanced prostate cancer. European Journal of Medicinal Chemistry, 2020, 199, 112414.	2.6	14
40	Synthesis of imidazolium-terminated carbosilane dendrimers and dendrons and study of their interactions with a cell membrane model. European Polymer Journal, 2020, 133, 109748.	2.6	9
41	CHAPTER 5. Poly(carbosilane) Dendrimers and Other Silicon-containing Dendrimers. Monographs in Supramolecular Chemistry, 2020, , 114-145.	0.2	8
42	PEGylated AgNP covered with cationic carbosilane dendrons to enhance antibacterial and inhibition of biofilm properties. International Journal of Pharmaceutics, 2019, 569, 118591.	2.6	28
43	Ruthenium dendrimers against acute promyelocytic leukemia:Â <i>in vitro</i> studies on HL-60 cells. Future Medicinal Chemistry, 2019, 11, 1741-1756.	1.1	14
44	Synthesis of bow-tie carbosilane dendrimers and their HIV antiviral capacity: A comparison of the dendritic topology on the biological process. European Polymer Journal, 2019, 119, 200-212.	2.6	13
45	Exploring the Interactions of Ruthenium (II) Carbosilane Metallodendrimers and Precursors with Model Cell Membranes through a Dual Spin-Label Spin-Probe Technique Using EPR. Biomolecules, 2019, 9, 540.	1.8	18
46	Synthesis and structural characterization of carbosilane ruthenium(II) metallodendrons containing cymene units. Journal of Organometallic Chemistry, 2019, 901, 120942.	0.8	4
47	Antibacterial Effect of Carbosilane Metallodendrimers in Planktonic Cells of Gram-Positive and Gram-Negative Bacteria and Staphylococcus aureus Biofilm. Biomolecules, 2019, 9, 405.	1.8	19
48	Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics, 2019, 11, 448.	2.0	86
49	Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules, 2019, 9, 411.	1.8	19
50	Anticancer Activity of Dendriplexes against Advanced Prostate Cancer from Protumoral Peptides and Cationic Carbosilane Dendrimers. Biomacromolecules, 2019, 20, 1224-1234.	2.6	14
51	In vitro and in vivo evaluation of first-generation carbosilane arene Ru(II)-metallodendrimers in advanced prostate cancer. European Polymer Journal, 2019, 113, 229-235.	2.6	17
52	Insight into the antitumor activity of carbosilane Cu(<scp>ii</scp>)–metallodendrimers through their interaction with biological membrane models. Nanoscale, 2019, 11, 13330-13342.	2.8	25
53	Dendronized magnetic nanoparticles for HIV-1 capture and rapid diagnostic. Colloids and Surfaces B: Biointerfaces, 2019, 181, 360-368.	2.5	22
54	<p>G1-S4 or G2-S16 carbosilan dendrimer in combination with Platycodin D as a promising vaginal microbicide candidate with contraceptive activity</p> . International Journal of Nanomedicine, 2019, Volume 14, 2371-2381.	3.3	15

#	Article	IF	CITATIONS
55	Synthesis and in vitro activity of new biguanide-containing dendrimers on pathogenic isolates of Acanthamoeba polyphaga and Acanthamoeba griffini. Parasitology Research, 2019, 118, 1953-1961.	0.6	7
56	Carbosilane Dendron–Peptide Nanoconjugates as Antimicrobial Agents. Molecular Pharmaceutics, 2019, 16, 2661-2674.	2.3	27
57	Aggregation behavior of surfactants with cationic and anionic dendronic head groups. Journal of Colloid and Interface Science, 2019, 534, 430-439.	5.0	12
58	Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics, 2019, 11, 25.	2.0	24
59	Ammonium and guanidine carbosilane dendrimers and dendrons as microbicides. European Polymer Journal, 2018, 101, 159-168.	2.6	23
60	Sulfonate-ended carbosilane dendrimers with a flexible scaffold cause inactivation of HIV-1 virions and gp120 shedding. Nanoscale, 2018, 10, 8998-9011.	2.8	20
61	Ruthenium dendrimers as carriers for anticancer siRNA. Journal of Inorganic Biochemistry, 2018, 181, 18-27.	1.5	33
62	Anionic Carbosilane Dendrimers Destabilize the GP120-CD4 Complex Blocking HIV-1 Entry and Cell to Cell Fusion. Bioconjugate Chemistry, 2018, 29, 1584-1594.	1.8	26
63	Carbon Nanotubes Decorated with Cationic Carbosilane Dendrons and Their Hybrids with Nucleic Acids. ChemNanoMat, 2018, 4, 220-230.	1.5	9
64	Study of non-covalent interactions on dendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions. Colloids and Surfaces B: Biointerfaces, 2018, 162, 380-388.	2.5	7
65	Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. International Journal of Biological Macromolecules, 2018, 108, 936-941.	3.6	10
66	Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. International Journal of Biological Macromolecules, 2018, 118, 1773-1780.	3.6	13
67	New bow-tie cationic carbosilane dendritic system with a curcumin core as an anti-breast cancer agent. New Journal of Chemistry, 2018, 42, 11732-11738.	1.4	9
68	Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B: Biointerfaces, 2017, 152, 414-422.	2.5	42
69	G2-S16 dendrimer as a candidate for a microbicide to prevent HIV-1 infection in women. Nanoscale, 2017, 9, 9732-9742.	2.8	25
70	Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. International Journal of Pharmaceutics, 2017, 528, 55-61.	2.6	45
71	Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants and mechanisms. Colloids and Surfaces B: Biointerfaces, 2017, 155, 11-16.	2.5	9
72	Strategies for penicillin V dendronization with cationic carbosilane dendrons and study of antibacterial properties. Canadian Journal of Chemistry, 2017, 95, 927-934.	0.6	9

#	Article	IF	CITATIONS
73	Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Transactions, 2017, 46, 8736-8745.	1.6	25
74	Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). European Polymer Journal, 2017, 87, 39-47.	2.6	34
75	Carbosilane metallodendrimers based on copper (II) complexes: Synthesis, EPR characterization and anticancer activity. Journal of Inorganic Biochemistry, 2017, 177, 211-218.	1.5	36
76	Carbosilane dendrons with fatty acids at the core as a new potential microbicide against HSV-2/HIV-1 co-infection. Nanoscale, 2017, 9, 17263-17273.	2.8	19
77	New anionic carbosilane dendrons functionalized with a DO3A ligand at the focal point for the prevention of HIV-1 infection. Antiviral Research, 2017, 146, 54-64.	1.9	8
78	Amphiphilic carbosilane dendrons as a novel synthetic platform toward micelle formation. Organic and Biomolecular Chemistry, 2017, 15, 7352-7364.	1.5	21
79	Synthesis of chiral carbosilane dendrimers with I -cysteine and N -acetyl- I -cysteine on their surface and their application as chiral selectors for enantiomer separation by capillary electrophoresis. Tetrahedron: Asymmetry, 2017, 28, 1797-1802.	1.8	12
80	Factors affecting interactions between sulphonate-terminated dendrimers and proteins: A three case study. Colloids and Surfaces B: Biointerfaces, 2017, 149, 196-205.	2.5	13
81	Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 49-58.	1.7	38
82	Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules, 2017, 22, 1581.	1.7	49
83	Efficacy of carbosilane dendrimers with an antiretroviral combination against HIV-1 in the presence of semen-derived enhancer of viral infection. European Journal of Pharmacology, 2017, 811, 155-163.	1.7	23
84	Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. International Journal of Nanomedicine, 2016, 11, 1281.	3.3	35
85	Nanotechnology as a New Therapeutic Approach to Prevent the HIV-Infection of Treg Cells. PLoS ONE, 2016, 11, e0145760.	1.1	11
86	Prevention of vaginal and rectal herpes simplex virus type 2 transmission in mice: mechanism of antiviral action. International Journal of Nanomedicine, 2016, 11, 2147.	3.3	25
87	Efficacy of HIV antiviral polyanionic carbosilane dendrimer G2-S16 in the presence of semen. International Journal of Nanomedicine, 2016, 11, 2443.	3.3	20
88	Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity. Chemistry - A European Journal, 2016, 22, 2987-2999.	1.7	40
89	Novel Water-Soluble Mucoadhesive Carbosilane Dendrimers for Ocular Administration. Molecular Pharmaceutics, 2016, 13, 2966-2976.	2.3	50
90	Structure–activity relationship study of cationic carbosilane dendritic systems as antibacterial agents. RSC Advances, 2016, 6, 7022-7033.	1.7	45

#	Article	IF	CITATIONS
91	The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide–dendrimer complexes with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3005-3016.	1.4	7
92	Dendronized PLGA nanoparticles with anionic carbosilane dendrons as antiviral agents against HIV infection. RSC Advances, 2016, 6, 73817-73826.	1.7	4
93	Synthesis of degradable cationic carbosilane dendrimers based on Si–O or ester bonds. Tetrahedron, 2016, 72, 5825-5830.	1.0	5
94	Improved Efficiency of Ibuprofen by Cationic Carbosilane Dendritic Conjugates. Molecular Pharmaceutics, 2016, 13, 3427-3438.	2.3	15
95	Effect of Several HIV Antigens Simultaneously Loaded with G2-NN16 Carbosilane Dendrimer in the Cell Uptake and Functionality of Human Dendritic Cells. Bioconjugate Chemistry, 2016, 27, 2844-2849.	1.8	8
96	Proof of concept of a "greener―protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer-protein interactions. Analytical and Bioanalytical Chemistry, 2016, 408, 7679-7687.	1.9	9
97	Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2016, 6, 97546-97554.	1.7	10
98	Polyphenolic carbosilane dendrimers as anticancer agents against prostate cancer. New Journal of Chemistry, 2016, 40, 10488-10497.	1.4	14
99	In vitro anti- Acanthamoeba synergistic effect of chlorhexidine and cationic carbosilane dendrimers against both trophozoite and cyst forms. International Journal of Pharmaceutics, 2016, 509, 1-7.	2.6	37
100	Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(<scp>ii</scp>) complexes. Dalton Transactions, 2016, 45, 7049-7066.	1.6	65
101	Polycationic carbosilane dendrimer decreases angiogenesis and tumor-associated macrophages in tumor-bearing mice. RSC Advances, 2015, 5, 104110-104115.	1.7	2
102	Carbosilane dendrimers affect the fibrillation of $\hat{l} extsf{t} extsf{-synuclein}$. AIP Conference Proceedings, 2015, , .	0.3	1
103	Mesoporous Silica Nanoparticles Decorated with Carbosilane Dendrons as New Nonâ€viral Oligonucleotide Delivery Carriers. Chemistry - A European Journal, 2015, 21, 15651-15666.	1.7	44
104	Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2015, 5, 25942-25958.	1.7	24
105	HIV-1 antiviral behavior of anionic PPI metallo-dendrimers withÂEDAÂcore. European Journal of Medicinal Chemistry, 2015, 98, 139-148.	2.6	26
106	Prevention vaginally of HIV-1 transmission in humanized BLT mice and mode of antiviral action of polyanionic carbosilane dendrimer G2-S16. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1299-1308.	1.7	52
107	Use of carbosilane dendrimer to switch macrophage polarization for the acquisition of antitumor functions. Nanoscale, 2015, 7, 3857-3866.	2.8	36
108	Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 907-915.	1.4	20

#	Article	IF	CITATIONS
109	Evaluation of the activity of new cationic carbosilane dendrimers on trophozoites and cysts of Acanthamoeba polyphaga. Parasitology Research, 2015, 114, 473-486.	0.6	30
110	In vivo delivery of siRNA to the brain by carbosilane dendrimer. Journal of Controlled Release, 2015, 200, 60-70.	4.8	98
111	Fluorescein labelled cationic carbosilane dendritic systems for biological studies. European Polymer Journal, 2015, 71, 61-72.	2.6	24
112	Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. International Journal of Pharmaceutics, 2015, 484, 268-275.	2.6	39
113	Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine, 2015, 10, 899-914.	1.7	44
114	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International Journal of Pharmaceutics, 2015, 485, 261-269.	2.6	64
115	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294.	2.6	71
116	Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1481-1498.	1.7	60
117	Anti-Human Immunodeficiency Virus Activity of Thiol-Ene Carbosilane Dendrimers and Their Potential Development as a Topical Microbicide. Journal of Biomedical Nanotechnology, 2015, 11, 1783-1798.	0.5	19
118	Synthesis, characterization and antibacterial behavior of water-soluble carbosilane dendrons containing ferrocene at the focal point. Dalton Transactions, 2015, 44, 19294-19304.	1.6	24
119	Thiol ended carbosilane dendrimers. A multivalent platform for the binding of molecules of biological interest. Tetrahedron Letters, 2015, 56, 5299-5302.	0.7	6
120	Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides. Nanoscale, 2015, 7, 14669-14683.	2.8	33
121	Bifunctional Chelating Agents Based on Ionic Carbosilane Dendrons with DO3A at the Focal Point and Their Complexation Behavior with Copper(II). Inorganic Chemistry, 2015, 54, 8943-8956.	1.9	10
122	Novel non-viral gene delivery systems composed of carbosilane dendron functionalized nanoparticles prepared from nano-emulsions as non-viral carriers for antisense oligonucleotides. International Journal of Pharmaceutics, 2015, 478, 113-123.	2.6	55
123	Nanotech-derived topical microbicides for HIV prevention: The road to clinical development. Antiviral Research, 2015, 113, 33-48.	1.9	26
124	Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides. International Journal of Nanomedicine, 2014, 9, 3591.	3.3	20
125	Cationic Dendritic Systems as Non-viral Vehicles for Gene Delivery Applications. RSC Polymer Chemistry Series, 2014, , 321-355.	0.1	1
126	Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine, 2014, 9, 2683-2702.	1.7	17

#	Article	IF	CITATIONS
127	Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. Journal of Controlled Release, 2014, 184, 51-57.	4.8	58
128	Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 609-618.	1.7	49
129	Polyanionic Functionalized Carbosilane Dendrimers as Potential Microbicides to Prevent HIV-1 Sexual Transmission. AIDS Research and Human Retroviruses, 2014, 30, A204-A204.	0.5	2
130	Synthesis of new amphiphilic waterâ€stable hyperbranched polycarbosilane polymers. Polymer International, 2014, 63, 1311-1323.	1.6	7
131	Broad-spectrum Anti-HIV-1 Activity of Anionic Carbosilane Dendrimers and Synergy in Combination with Maraviroc and Tenofovir as Topical Microbicide. AIDS Research and Human Retroviruses, 2014, 30, A144-A144.	0.5	1
132	Antiviral Action of Sulfonate Anionic Carbosilane Dendrimer as a Topical Microbicide against HIV Infection. AIDS Research and Human Retroviruses, 2014, 30, A205-A205.	0.5	4
133	Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Advances, 2014, 4, 1256-1265.	1.7	73
134	Synthesis of new anionic carbosilane dendrimers via thiol–ene chemistry and their antiviral behaviour. Organic and Biomolecular Chemistry, 2014, 12, 3222.	1.5	41
135	Heterofunctionalized Carbosilane Dendritic Systems: Bifunctionalized Dendrons as Building Blocks versus Statistically Decorated Dendrimers. Organometallics, 2014, 33, 3977-3989.	1.1	25
136	Interference of cationic polymeric nanoparticles with clinical chemistry tests—Clinical relevance. International Journal of Pharmaceutics, 2014, 473, 599-606.	2.6	15
137	Interaction of cationic carbosilane dendrimers and their complexes with siRNA with erythrocytes and red blood cell ghosts. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 882-889.	1.4	23
138	Synthesis of anionic carbosilane dendrimers via "click chemistry―and their antiviral properties against HIV. Journal of Polymer Science Part A, 2014, 52, 1099-1112.	2.5	36
139	Amphiphilic Cationic Carbosilane–PEG Dendrimers: Synthesis and Applications in Gene Therapy. European Journal of Medicinal Chemistry, 2014, 76, 43-52.	2.6	35
140	Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
141	In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitology Research, 2013, 112, 961-969.	0.6	17
142	In vitro comparative assessment of different viability assays in Acanthamoeba castellanii and Acanthamoeba polyphaga trophozoites. Parasitology Research, 2013, 112, 4087-4095.	0.6	18
143	Thiol-Ene Synthesis of Cationic Carbosilane Dendrons: a New Family of Synthons. Organometallics, 2013, 32, 1789-1796.	1.1	47
144	Thermal stability of second generation carbosilane dendrimers with peripheral ammonia groups. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	0

#	Article	IF	CITATIONS
145	Anionic sulfonated and carboxylated PPI dendrimers with the EDA core: synthesis and characterization of selective metal complexing agents. Dalton Transactions, 2013, 42, 5874.	1.6	22
146	Novel â€~SiC' carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids and Surfaces B: Biointerfaces, 2013, 109, 183-189.	2.5	40
147	Complexation of HIV derived peptides with carbosilane dendrimers. Colloids and Surfaces B: Biointerfaces, 2013, 101, 236-242.	2.5	40
148	Study of cationic carbosilane dendrimers as potential activating stimuli in macrophages. RSC Advances, 2013, 3, 23445.	1.7	10
149	Development of sulphated and naphthylsulphonated carbosilane dendrimers as topical microbicides to prevent HIV-1 sexual transmission. Aids, 2013, 27, 1219-1229.	1.0	49
150	Synergistic activity of carbosilane dendrimers in combination with maraviroc against HIV in vitro. Aids, 2013, 27, 2053-2058.	1.0	30
151	Biophysical Characterization of Glycodendrimers As Nano-carriers for HIV Peptides. Current Medicinal Chemistry, 2013, 20, 3935-3943.	1.2	17
152	Carbosilane Dendrimers are a Non-Viral Delivery System for Antisense Oligonucleotides: Characterization of Dendriplexes. Journal of Biomedical Nanotechnology, 2012, 8, 57-73.	0.5	34
153	Polyanionic N-donor ligands as chelating agents in transition metal complexes: synthesis, structural characterization and antiviral properties against HIV. Dalton Transactions, 2012, 41, 6488.	1.6	18
154	siRNA carriers based on carbosilane dendrimers affect zeta potential and size of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2209-2216.	1.4	31
155	New hyperbranched carbosiloxane–carbosilane polymers with aromatic units in the backbone. European Polymer Journal, 2012, 48, 1413-1421.	2.6	9
156	Synthesis and fluorescent properties of cationic carbosilane dendrimers containing eugenol linkers for their use in biomedical applications. New Journal of Chemistry, 2012, 36, 360-370.	1.4	12
157	Dendrimers as topical microbicides with activity against HIV. New Journal of Chemistry, 2012, 36, 299-309.	1.4	45
158	Synthesis of Cationic Carbosilane Dendrimers via Click Chemistry and Their Use as Effective Carriers for DNA Transfection into Cancerous Cells. Molecular Pharmaceutics, 2012, 9, 433-447.	2.3	31
159	Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Transactions, 2012, 41, 12733.	1.6	45
160	Carbosilane Dendrimer 2G-NN16 Represses Tc17 Differentiation in Primary T CD8+ Lymphocytes. Molecular Pharmaceutics, 2012, 9, 102-110.	2.3	12
161	Cationic carbosilane dendrimers–lipid membrane interactions. Chemistry and Physics of Lipids, 2012, 165, 401-407.	1.5	30
162	Characterization of carboxylate-terminated carbosilane dendrimers and their evaluation as nanoadditives in capillary electrophoresis for vegetable protein profiling. Journal of Chromatography A, 2012, 1234, 16-21.	1.8	15

Rafael Gomez

#	Article	IF	CITATIONS
163	The inhibition of Th17 immune response inÂvitro and inÂvivo by the carbosilane dendrimer 2G-NN16. Biomaterials, 2012, 33, 4002-4009.	5.7	17
164	Carbosilane dendrimer nanotechnology outlines of the broad HIV blocker profile. Journal of Controlled Release, 2012, 161, 949-958.	4.8	82
165	Antiviral Properties Against HIV of Water Soluble Copper Carbosilane Dendrimers and their EPR Characterization. Current Medicinal Chemistry, 2012, 19, 4984-4994.	1.2	27
166	In Vitro Studies of Water-Stable Cationic Carbosilane Dendrimers As Delivery Vehicles for Gene Therapy Against HIV and Hepatocarcinoma. Current Medicinal Chemistry, 2012, 19, 5052-5061.	1.2	34
167	Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Organic and Biomolecular Chemistry, 2011, 9, 5238.	1.5	59
168	Transitionâ€Metal Complexes Based on a Sulfonate ontaining Nâ€Donor Ligand and Their Use as HIV Antiviral Agents. European Journal of Inorganic Chemistry, 2011, 2011, 1657-1665.	1.0	17
169	Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids and Surfaces B: Biointerfaces, 2011, 83, 388-391.	2.5	33
170	Modification of Resolution in Capillary Electrophoresis for Protein Profiling in Identification of Genetic Modification in Foods. Croatica Chemica Acta, 2011, 84, 375-382.	0.1	8
171	Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetrahedron, 2010, 66, 9203-9213.	1.0	43
172	Gene Therapy in HIVâ€Infected Cells to Decrease Viral Impact by Using an Alternative Delivery Method. ChemMedChem, 2010, 5, 921-929.	1.6	48
173	Inside Cover: Gene Therapy in HIV-Infected Cells to Decrease Viral Impact by Using an Alternative Delivery Method (ChemMedChem 6/2010). ChemMedChem, 2010, 5, 798-798.	1.6	2
174	Phenotype and functional analysis of human monocytes-derived dendritic cells loaded with a carbosilane dendrimer. Biomaterials, 2010, 31, 8749-8758.	5.7	46
175	Globular carbosilane dendrimers with mannose groups at the periphery: synthesis, characterization and toxicity in dendritic cells. Tetrahedron, 2010, 66, 3326-3331.	1.0	12
176	Carbosilane Dendrimers to Transfect Human Astrocytes with Small Interfering RNA Targeting Human Immunodeficiency Virus. BioDrugs, 2010, 24, 331-343.	2.2	66
177	Changes in Gene Expression Pattern of Human Primary Macrophages Induced by Carbosilane Dendrimer 2G-NN16. Pharmaceutical Research, 2009, 26, 577-586.	1.7	37
178	Highly Efficient Transfection of Rat Cortical Neurons Using Carbosilane Dendrimers Unveils a Neuroprotective Role for HIF-1α in Early Chemical Hypoxia-Mediated Neurotoxicity. Pharmaceutical Research, 2009, 26, 1181-1191.	1.7	63
179	Binding Properties of Water-Soluble Carbosilane Dendrimers. Journal of Fluorescence, 2009, 19, 267-275.	1.3	21
180	Water-stable ammonium-terminated carbosilane dendrimers as efficient antibacterial agents. Dalton Transactions, 2009, , 8704.	1.6	64

#	Article	IF	CITATIONS
181	Carbosilane dendrimers peripherally functionalized with dansyl fluorescence tags and their cellular internalization studies. Organic and Biomolecular Chemistry, 2009, 7, 3079.	1.5	9
182	Carbosilane dendrimers containing complexes N,N′-pyridylimine of molybdenum and platinum at their periphery. Journal of Organometallic Chemistry, 2008, 693, 278-282.	0.8	9
183	Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. Journal of Controlled Release, 2008, 132, 55-64.	4.8	154
184	Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Organic and Biomolecular Chemistry, 2008, 6, 3264.	1.5	65
185	Analysis of Interaction between Dendriplexes and Bovine Serum Albumin. Biomacromolecules, 2007, 8, 2059-2062.	2.6	47
186	Water-soluble carbosilane dendrimers protect phosphorothioate oligonucleotides from binding to serum proteins. Organic and Biomolecular Chemistry, 2007, 5, 1886-1893.	1.5	55
187	Water-Soluble Carbosilane Dendrimers: Synthesis Biocompatibility and Complexation with Oligonucleotides; Evaluation for Medical Applications. Chemistry - A European Journal, 2007, 13, 483-495.	1.7	149
188	Synthesis and1H NMR studies of paramagnetic nickel(ii) complexes containing bis(pyrazolyl)methane ligands with dendritic substituents. Dalton Transactions, 2006, , 5379-5389.	1.6	21
189	Mononuclear and Dendritic Nickel(II) Complexes Containing N,Nâ€~-Iminopyridine Chelating Ligands: Generation Effects on the Catalytic Oligomerization and Polymerization of Ethylene. Organometallics, 2006, 25, 3876-3887.	1.1	97
190	Neutral and Cationic Dendritic Palladium(II) Complexes ContainingN,Nâ€~-Iminopyridine Chelating Ligands. Synthesis and Their Use for the Syndiospecific Copolymerization of CO/4-tert-Butylstyreneâ€. Organometallics, 2006, 25, 3045-3055.	1.1	44
191	Carbosilane dendrimers containing peripheral cyclopentadienyl niobium- and tantalum-imido complexes. Journal of Organometallic Chemistry, 2006, 691, 3602-3608.	0.8	11
192	Novel Water-Soluble Carbosilane Dendrimers: Synthesis and Biocompatibility. European Journal of Inorganic Chemistry, 2006, 2006, 1388-1396.	1.0	64
193	Carbosilane Dendrons Functionalized at Their Focal Point. European Journal of Inorganic Chemistry, 2005, 2005, 3742-3749.	1.0	22
194	An NMR and Molecular Modeling Study of Carbosilane-Based Dendrimers Functionalized with Phenolic Groups or Titanium Complexes at the Periphery. Chemistry - A European Journal, 2005, 11, 1217-1227.	1.7	20
195	Dendritic β-diketiminato titanium and zirconium complexes: synthesis and ethylene polymerisation. Journal of Organometallic Chemistry, 2005, 690, 939-943.	0.8	36
196	Ethylene polymerization behavior of monometallic complexes and metallodendrimers based on cyclopentadienyl-aryloxy titanium units. Journal of Organometallic Chemistry, 2005, 690, 4620-4627.	0.8	15
197	Generation effects on the microstructure and product distribution in ethylene polymerization promoted by dendritic nickel catalysts. Chemical Communications, 2005, , 5217.	2.2	47
198	Neutral and Cationic Aluminum and Titanium Complexes Incorporating Sterically Demanding Organosilicon Ligands. Organometallics, 2005, 24, 2331-2338.	1.1	35

#	Article	IF	CITATIONS
199	Tris(pyrazolyl)methane Ligands: Syntheses and Structures of Monometallic and Metallodendritic Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 3287-3296.	1.0	36
200	Synthesis of polymetallic Group 4 complexes bridged by benzenediolate and triolate ligands. X-ray crystal structure of [{Ti(C5Me5)Cl2}2{μ-1,4-O(2,3-C6H2Me2)Oî—,}]. Journal of Organometallic Chemistry, 2003, 681, 228-236.	0.8	11
201	Synthesis of Aryloxo Cyclopentadienyl Group 4 Metal-Containing Dendrimers. Organometallics, 2003, 22, 5109-5113.	1.1	24
202	Titanocene and Zirconocene Complexes containing Dendrimer-Substituted Cyclopentadienyl Ligands â~' Synthesis and Ethylene Polymerization. European Journal of Inorganic Chemistry, 2002, 2002, 2281-2286.	1.0	41
203	Arylimido niobium(V) complexes: mononuclear and dendritic derivatives. Journal of Organometallic Chemistry, 2002, 664, 258-267.	0.8	17
204	Mono- and di-cyclopentadienyl zirconium derivatives containing the dimethylsilylcyclopentadienyl ligand. Agostic linear Si–H–Zr interaction in the molecular structure of [Zr{η5-C5H4(SiMe2H)}Cl3]2 â€. Dalton Transactions RSC, 2001, , 1657-1663.	2.3	23
205	Synthesis of Carbosilane Dendrimers Containing Peripheral (Cyclopentadienyl)(aryloxy)titanium(IV) Units. Organometallics, 2001, 20, 2583-2592.	1.1	48
206	A study of ortho- and para-siloxyanilines for the synthesis of mono-, bi-, and tetra-nuclear early transition metal–imido complexes. Journal of Organometallic Chemistry, 2000, 610, 42-48.	0.8	16
207	Silane dendrimers containing titanium complexes on their periphery. Journal of Organometallic Chemistry, 2000, 602, 208-210.	0.8	27
208	Cationic species derived from the η1-amidosilyl-η5-cyclopentadienyl dimethyl titanium complex. Crystal structure of [Ti{η5-C5H4SiMe2[η1-N(2,6-Me2C6H3)]}{CH2B(C6F5)2}(C6F5)]. Journal of Organometallic Chemistry, 1999, 588, 22-27.	0.8	27
209	Synthesis of mono- and dinuclear cyclopentadienyl–aryloxy titanium(IV) complexes. Journal of Organometallic Chemistry, 1999, 592, 265-270.	0.8	10
210	Reactivity of chlorodimethylsilyl-η5-cyclopentadienyltrichlorotitanium with nitrogen based donors. X-ray molecular structure of [Ti?η5-C5H4SiMe2[η1-N(2,6-Me2C6H3)]?Cl2]. Journal of Organometallic Chemistry, 1998, 564, 93-100.	0.8	28
211	Silyl and siloxanediyl cyclopentadienyl titanium and zirconium complexes: synthesis and reactivity. X-ray molecular structure of [Zr{η5-C5H4SiMe2(μ-OH)} (μ-Cl)Cl2]2. Polyhedron, 1998, 17, 1055-1064.	1.0	17
212	Synthesis and reactivity of new silyl substituted monocyclopentadienyl zirconium complexes. X-ray molecular structure of [Zrη5-C5H4 (SiMe2CH2Ph)(CH2Ph)3]. Journal of Organometallic Chemistry, 1997, 547, 287-296.	0.8	14
213	Synthesis and Reactivity of [(Amidosilyl)cyclopentadienyl]titanium and -zirconium Complexes. X-ray Molecular Structure of [Zr{η5:η1-C5H4SiMe2(μ-O)}Cl2{H2N(CHMe)Ph}]2. Organometallics, 1996, 15, 5577-5585.	1.1	83
214	Unexpected reactions of pentafluorophenyl boron compounds with Î-cyclopentadienyl(benzamidinato)zirconium derivatives. Journal of the Chemical Society Dalton Transactions, 1996, , 939-946.	1.1	36
215	Mono-Î7-cyclopentadienyl-benzamidinato chloro compounds of titanium, zirconium and hafnium. Journal of Organometallic Chemistry, 1995, 491, 153-158.	0.8	84
216	Mono(Îcyclopentadienyl)benzamidinato alkyl compounds of titanium and zirconium. Journal of the Chemical Society Dalton Transactions, 1995, , 217-225.	1.1	49

#	Article	IF	CITATIONS
217	Unexpected reactions of pentafluorophenylboron compounds with Îcyclopentadienyl(benzamidinato)zirconium derivatives. Journal of the Chemical Society Chemical Communications, 1994, , 2607-2608.	2.0	53
218	Synthesis and characterization of ansa-dimethylsilylbiscyclopentadienyl titanium(II) complexes. Crystal structure of [Ti{Me2Si(C5H4)2}{CN(2,6-Me2C6H3)}2]. Journal of Organometallic Chemistry, 1993, 454, 105-111.	0.8	21
219	Mono-Îcyclopentadienyl-benzamidinato compounds of titanium, zirconium and hafnium. Journal of the Chemical Society Chemical Communications, 1993, , 1415-1417.	2.0	39
220	Monocyclopentadienyl-type titanium complexes with the [.eta.5eta.5-(C5H4)2SiMe2]2-ligand. X-ray crystal structure of [(TiCl)2(.mu.2-O){.mu.2eta.5eta.5-(C5H4)2SiMe2}]2(.mu.2-O)2. The first example of a nonpolar titanium oxide ["Ti4O4"] core. [Erratum to document cited in CA118(19):191900f]. Organometallics, 1993, 12, 3378-3378.	1.1	0
221	Monocyclopentadienyl-type titanium complexes with the [.eta.5eta.5-(C5H4)2SiMe2]2- ligand. X-ray crystal structure of [(TiCl)2(.mu.2-O){.mu.2eta.5eta.5-(C5H4)2SiMe2}]2(.mu.2-O)2. The first example of a nonplanar titanium oxide ["Ti4O4"] core. Organometallics, 1993, 12, 944-948.	1.1	47
222	Dinuclear titanium metallocene-type complexes with the bridging (dimethylsilylidene)bis(cyclopentadienyl) ligand. X-ray structures of [{TiCl2(.eta.5-C5Me5)}2{.mueta.5eta.5-(C5H4)2SiMe2}] and of [{TiCl(.eta.5-C5H5)}2(.muO){.mueta.5eta.5-(C5H4)2SiMe2}]. Inorganic Chemistry, 1993, 32, 3608-3612.	1.9	36
223	Reactions of titanium- and zirconium(III) complexes with unsaturated organic systems. X-ray structure of {[(.eta.5-C5H5)Zr(CH3)]2[.mueta.1eta.2-CN(Me2C6H3)] (.mueta.5eta.5-C10H8)}. Organometallics, 1992, 11, 1229-1234.	1.1	50
224	Dialkyl- and chloroalkyltitanium ansa-metallocene complexes: synthesis and characterization. Crystal structure of [.eta.5eta.5-(C5H4)2Si(CH3)2]TiClCH3. Organometallics, 1991, 10, 2516-2518.	1.1	21
225	Group 4 ansa-metallocenes in oxidation state (III): synthesis, characterization, and chemical behavior. Crystal structure of [[.eta.5:.eta.5-(C5H4)2Si(CH3)2]TiCl(PMe2Ph)]. Organometallics, 1991, 10, 1505-1510.	1.1	25
226	Stereorigid titanocene and zirconocene derivatives. Synthesis and crystal structure of the dialkyl complex [î·5-î·5-(C5H4)2Si(CH3)2]Ti[CH2Si(CH3)3]2. Journal of Organometallic Chemistry, 1990, 382, 103-108.	0.8	27