Xin Bo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927761/publications.pdf

Version: 2024-02-01

16 papers	949 citations	687363 13 h-index	940533 16 g-index
1.6	1.6	1.6	1205
16 all docs	16 docs citations	16 times ranked	1395 citing authors

#	Article	IF	CITATIONS
1	The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction. Current Opinion in Electrochemistry, 2022, 34, 100987.	4.8	7
2	Operando identification of active sites in Co-Cr oxyhydroxide oxygen evolution electrocatalysts. Nano Energy, 2022, 101, 107562.	16.0	14
3	Investigation of the synergistic effect on cobalt oxide modified silver surface for electrocatalytic hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 869, 159324.	5.5	14
4	Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy and Environmental Science, 2020, 13, 4225-4237.	30.8	186
5	Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. Nature Communications, 2020, 11, 2720.	12.8	113
6	Microwave-Induced Plasma Synthesis of Defect-Rich, Highly Ordered Porous Phosphorus-Doped Cobalt Oxides for Overall Water Electrolysis. Journal of Physical Chemistry C, 2020, 124, 9971-9978.	3.1	26
7	<i>Operando</i> Raman Spectroscopy Reveals Cr-Induced-Phase Reconstruction of NiFe and CoFe Oxyhydroxides for Enhanced Electrocatalytic Water Oxidation. Chemistry of Materials, 2020, 32, 4303-4311.	6.7	115
8	Design of Multiâ€Metallicâ€Based Electrocatalysts for Enhanced Water Oxidation. ChemPhysChem, 2019, 20, 2936-2945.	2.1	48
9	Microwave-assisted shock synthesis of diverse ultrathin graphene-derived materials. Materials Chemistry Frontiers, 2019, 3, 1433-1439.	5.9	13
10	Manipulation of Charge Transport by Metallic V ₁₃ O ₁₆ Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Advanced Materials, 2019, 31, e1807204.	21.0	57
11	Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 461-466.	13.8	95
12	Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for pH-Insensitive Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 2866-2871.	6.7	66
13	High valence chromium regulated cobalt-iron-hydroxide for enhanced water oxidation. Journal of Power Sources, 2018, 402, 381-387.	7.8	60
14	Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angewandte Chemie, 2018, 131, 471.	2.0	19
15	Low-Temperature Synthesis of Cuboid Silver Tetrathiotungstate (Ag2WS4) as Electrocatalyst for Hydrogen Evolution Reaction. Inorganic Chemistry, 2018, 57, 5791-5800.	4.0	20
16	NiFeCr Hydroxide Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Distribution (1988) and Provided Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Distribution (1988) and Provided Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Distribution (1988) and Provided Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Distribution (1988) and Provided Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Distribution (1988) and Provided Holey Nanosheet	8.0	96