
Svetlana Stevanovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An experimental investigation of diesel soot thermal-induced oxidation based on the chemical structure evolution. Carbon, 2022, 188, 246-253.	5.4	11
2	Gaseous and particulate emissions analysis using microalgae based dioctyl phthalate biofuel during cold, warm and hot engine operation. Fuel, 2022, 312, 122965.	3.4	5
3	Particulate number emissions during cold-start with diesel and biofuels: A special focus on particle size distribution. Sustainable Energy Technologies and Assessments, 2022, 51, 101953.	1.7	2
4	Morphological and Nanostructural Characteristics of Diesel Exhaust Soot Particles at Different Engine Operating Conditions. Lecture Notes in Mechanical Engineering, 2022, , 409-417.	0.3	1
5	Multi-criteria prioritization of the renewable power plants in Australia using the fuzzy logic in decision-making method (FMCDM). Clean Energy, 2022, 6, 16-34.	1.5	10
6	Role of semi-volatile particulate matter in gas-particle partitioning leading to change in oxidative potential. Environmental Pollution, 2021, 270, 116061.	3.7	4
7	Cold-start NOx emissions: Diesel and waste lubricating oil as a fuel additive. Fuel, 2021, 286, 119430.	3.4	23
8	Soot particle morphology and nanostructure with oxygenated fuels: A comparative study into cold-start and hot-start operation. Environmental Pollution, 2021, 275, 116592.	3.7	21
9	Analysis of cold-start NO2 and NOx emissions, and the NO2/NOx ratio in a diesel engine powered with different diesel-biodiesel blends. Environmental Pollution, 2021, 290, 118052.	3.7	32
10	The impact of chemical composition of oxygenated fuels on morphology and nanostructure of soot particles. Fuel, 2020, 259, 116167.	3.4	46
11	Comparison of light absorption and oxidative potential of biodiesel/diesel and chemicals/diesel blends soot particles. Journal of Environmental Sciences, 2020, 87, 184-193.	3.2	13
12	The effect of diesel fuel sulphur and vanadium on engine performance and emissions. Fuel, 2020, 261, 116437.	3.4	21
13	Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. Science of the Total Environment, 2020, 708, 135209.	3.9	11
14	Combustion Analysis of a Diesel Engine during Warm up at Different Coolant and Lubricating Oil Temperatures. Energies, 2020, 13, 3931.	1.6	15
15	The diurnal characteristics of PM-bound ROS and its influencing factors at urban ambient and roadside environments. Atmospheric Research, 2020, 244, 105039.	1.8	8
16	Assessing the Effect of Reactive Oxygen Species and Volatile Organic Compound Profiles Coming from Certain Types of Chinese Cooking on the Toxicity of Human Bronchial Epithelial Cells. Environmental Science & Technology, 2020, 54, 8868-8877.	4.6	30
17	Emissions and performance with diesel and waste lubricating oil: A fundamental study into cold start operation with a special focus on particle number size distribution. Energy Conversion and Management, 2020, 209, 112604.	4.4	19
18	Engine Performance and Emissions Analysis in a Cold, Intermediate and Hot Start Diesel Engine. Applied Sciences (Switzerland), 2020, 10, 3839.	1.3	17

SVETLANA STEVANOVIC

#	Article	IF	CITATIONS
19	The correlation between diesel soot chemical structure and reactivity. Carbon, 2020, 161, 736-749.	5.4	42
20	Relationship between Atmospheric PM-Bound Reactive Oxygen Species, Their Half-Lives, and Regulated Pollutants: Investigation and Preliminary Model. Environmental Science & Technology, 2020, 54, 4995-5002.	4.6	8
21	Structural characterisation of soot particles for cold-start and hot-start operation of a diesel engine. , 2020, , .		4
22	The cytotoxic, inflammatory and oxidative potential of coconut oil-substituted diesel emissions on bronchial epithelial cells at an air-liquid interface. Environmental Science and Pollution Research, 2019, 26, 27783-27791.	2.7	14
23	Effect of cold start on engine performance and emissions from diesel engines using IMO-Compliant distillate fuels. Environmental Pollution, 2019, 255, 113260.	3.7	15
24	Diurnal profiles of particle-bound ROS of PM2.5 in urban environment of Hong Kong and their association with PM2.5, black carbon, ozone and PAHs. Atmospheric Environment, 2019, 219, 117023.	1.9	12
25	Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies. Sensors, 2019, 19, 4564.	2.1	3
26	Multivariate analysis of performance and emission parameters in a diesel engine using biodiesel and oxygenated additive. Energy Conversion and Management, 2019, 201, 112183.	4.4	32
27	Effect of Oxygenated Functional Groups in Essential Oils on Diesel Engine Performance, Emissions, and Combustion Characteristics. Energy & Fuels, 2019, 33, 9828-9834.	2.5	8
28	An instrument for the rapid quantification of PM-bound ROS: the Particle Into Nitroxide Quencher (PINQ). Atmospheric Measurement Techniques, 2019, 12, 2387-2401.	1.2	11
29	An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines. Energies, 2019, 12, 1987.	1.6	47
30	Quantification of Particle-Bound Organic Radicals in Secondary Organic Aerosol. Environmental Science & Technology, 2019, 53, 6729-6737.	4.6	25
31	Experimental Analysis of the Morphology and Nanostructure of Soot Particles for Butanol/Diesel Blends at Different Engine Operating Modes. Energy & Fuels, 2019, 33, 5632-5646.	2.5	25
32	Influence of fuel-oxygen content on morphology and nanostructure of soot particles. Combustion and Flame, 2019, 205, 206-219.	2.8	67
33	An experimental study of the role of biodiesel on the performance of diesel particulate filters. Fuel, 2019, 247, 67-76.	3.4	34
34	Primary human bronchial epithelial cell responses to diesel and biodiesel emissions at an air-liquid interface. Toxicology in Vitro, 2019, 57, 67-75.	1.1	12
35	Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays. International Journal of Environmental Research and Public Health, 2019, 16, 4906.	1.2	17
36	The effect of diesel emission exposure on primary human bronchial epithelial cells from a COPD cohort: N-acetylcysteine as a potential protective intervention. Environmental Research, 2019, 170, 194-202.	3.7	14

SVETLANA STEVANOVIC

#	Article	IF	CITATIONS
37	Characterization particulate matter from several Chinese cooking dishes and implications in health effects. Journal of Environmental Sciences, 2018, 72, 98-106.	3.2	55
38	Characterizing pollutant emissions from mosquito repellents incenses and implications in risk assessment of human health. Chemosphere, 2018, 191, 962-970.	4.2	25
39	Investigating particles, VOCs, ROS produced from mosquito-repellent incense emissions and implications in SOA formation and human health. Building and Environment, 2018, 143, 645-651.	3.0	22
40	Emissions of particulate matter, carbon monoxide and nitrogen oxides from the residential burning of waste paper briquettes and other fuels. Environmental Research, 2018, 167, 536-543.	3.7	30
41	Primary human bronchial epithelial cell responses to diesel and novel biodiesel emissions. , 2018, , .		0
42	Role of Chinese cooking emissions on ambient air quality and human health. Science of the Total Environment, 2017, 589, 173-181.	3.9	155
43	Oxidative potential of gas phase combustion emissions - An underestimated and potentially harmful component of air pollution from combustion processes. Atmospheric Environment, 2017, 158, 227-235.	1.9	26
44	Assessing impacts of factors on carbonyl compounds emissions produced from several typical Chinese cooking. Building and Environment, 2017, 125, 348-355.	3.0	43
45	Particle exposure level and potential health risks of domestic Chinese cooking. Building and Environment, 2017, 123, 564-574.	3.0	60
46	On-road vehicle emissions and their control in China: A review and outlook. Science of the Total Environment, 2017, 574, 332-349.	3.9	424
47	The effect of diesel emission exposure on intracellular signaling pathways of primary human bronchial epithelial cells. , 2017, , .		0
48	Influence of oxygen content of the certain types of biodiesels on particulate oxidative potential. Science of the Total Environment, 2016, 545-546, 381-388.	3.9	44
49	N-acetyl cysteine (NAC) intervention attenuates the effects of diesel and biodiesel emission exposure on human bronchial epithelial cells, 16HBE, at air-liquid interface. , 2016, , .		2
50	Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles. Atmospheric Chemistry and Physics, 2015, 15, 9099-9108.	1.9	16
51	Insights into the growth of newly formed particles in a subtropical urban environment. Atmospheric Chemistry and Physics, 2015, 15, 13475-13485.	1.9	6
52	Review-evaluating the molecular assays for measuring the oxidative potential of particulate matter. Chemical Industry and Chemical Engineering Quarterly, 2015, 21, 201-210.	0.4	52
53	Particle emissions from microalgae biodiesel combustion and their relative oxidative potential. Environmental Sciences: Processes and Impacts, 2015, 17, 1601-1610.	1.7	36
54	Characterisation of a Commercially Available Thermodenuder and Diffusion Drier for Ultrafine Particles Losses. Aerosol and Air Quality Research, 2015, 15, 357-363.	0.9	13

SVETLANA STEVANOVIC

#	Article	IF	CITATIONS
55	To Sonicate or Not to Sonicate PM Filters: Reactive Oxygen Species Generation Upon Ultrasonic Irradiation. Aerosol Science and Technology, 2014, 48, 1276-1284.	1.5	76
56	Influence of Fuel Molecular Structure on the Volatility and Oxidative Potential of Biodiesel Particulate Matter. Environmental Science & Technology, 2014, 48, 12577-12585.	4.6	27
57	Particle emissions from biodiesels with different physical properties and chemical composition. Fuel, 2014, 134, 201-208.	3.4	85
58	Influence of Different Alternative Fuels on Particle Emission from a Turbocharged Common-Rail Diesel Engine. Procedia Engineering, 2013, 56, 381-386.	1.2	21
59	Influence of Oxygenated Organic Aerosols (OOAs) on the Oxidative Potential of Diesel and Biodiesel Particulate Matter. Environmental Science & Technology, 2013, 47, 7655-7662.	4.6	54
60	Application of profluorescent nitroxides for measurements of oxidative capacity of combustion generated particles. Chemical Industry and Chemical Engineering Quarterly, 2012, 18, 653-659.	0.4	13
61	The Use of a Nitroxide Probe in DMSO to Capture Free Radicals in Particulate Pollution. European Journal of Organic Chemistry, 2012, 2012, 5908-5912.	1.2	30
62	Physicochemical Characterization of Particulate Emissions from a Compression Ignition Engine: The Influence of Biodiesel Feedstock. Environmental Science & Technology, 2011, 45, 10337-10343.	4.6	54
63	Engine Performance Characteristics for Biodiesels of Different Degrees of Saturation and Carbon Chain Lengths. SAE International Journal of Fuels and Lubricants, 0, 6, 188-198.	0.2	36
64	Characteristics of Particle Number and Particle Mass Emissions of a Diesel Engine during Cold-,		4

* Warm-, and Hot-Start Operation. , 0, , .