Lauren M Slosky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a functionally selective ghrelin receptor (GHSR _{1a}) ligand for modulating brain dopamine. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112397119.	3.3	4
2	Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery. Trends in Pharmacological Sciences, 2021, 42, 283-299.	4.0	94
3	β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors. Cell, 2020, 181, 1364-1379.e14.	13.5	74
4	Discovery of β-Arrestin Biased, Orally Bioavailable, and CNS Penetrant Neurotensin Receptor 1 (NTR1) Allosteric Modulators. Journal of Medicinal Chemistry, 2019, 62, 8357-8363.	2.9	22
5	Encoding the β-Arrestin Trafficking Fate of Ghrelin Receptor GHSR1a: C-Tail-Independent Molecular Determinants in GPCRs. ACS Pharmacology and Translational Science, 2019, 2, 230-246.	2.5	8
6	Ghrelin receptor antagonism of hyperlocomotion in cocaineâ€sensitized mice requires βarrestinâ€2. Synapse, 2018, 72, e22012.	0.6	12
7	Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation. Pain, 2017, 158, 1733-1742.	2.0	55
8	The cystine/glutamate antiporter system xc â^' drives breast tumor cell glutamate release and cancer-induced bone pain. Pain, 2016, 157, 2605-2616.	2.0	32
9	Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain, 2016, 157, 2709-2721.	2.0	46
10	Use of Animal Models in Understanding Cancer-induced Bone Pain. Cancer Growth and Metastasis, 2015, 8s1, CGM.S21215.	3.5	39
11	Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opinion on Therapeutic Patents, 2015, 25, 443-466.	2.4	20
12	(277) The cystine-glutamate antiporter system xc- drives tumor cell glutamate release and cancer-induced bone pain. Journal of Pain, 2015, 16, S45.	0.7	1
13	Angiotensinâ€(1â€7) as an Antinociceptive Agent in Cancerâ€Induced Bone Pain. FASEB Journal, 2015, 29, 897.4.	0.2	0
14	P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac. PLoS ONE, 2014, 9, e88516.	1.1	38
15	Hypoxia/Reoxygenation Stress Signals an Increase in Organic Anion Transporting polypeptide 1a4 (Oatp1a4) at the Blood–Brain Barrier: Relevance to CNS Drug Delivery. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 699-707.	2.4	64
16	Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery?. Current Pharmaceutical Design, 2014, 20, 1422-1449.	0.9	201
17	Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor–Dependent Mechanism. Molecular Pharmacology, 2013, 84, 774-786. 	1.0	49
18	A comparative study of the retention and lethality of the first and second generation arthropod protein markers. Entomologia Experimentalis Et Applicata, 2012, 144, 165-171.	0.7	12