
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927445/publications.pdf Version: 2024-02-01

EDIC DOCT

#	Article	IF	CITATIONS
1	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	0.9	7
2	Seasonality, niche management and vertical migration in landscapes of relief. Ecography, 2022, 2022, .	2.1	8
3	<scp>drp</scp> T <scp>oolkit</scp> : An automated workflow for aligning and analysing vegetation and ground surface timeâ€series imagery. Methods in Ecology and Evolution, 2022, 13, 54-59.	2.2	2
4	Large herbivores facilitate the persistence of rare taxa under tundra warming. Scientific Reports, 2022, 12, 1292.	1.6	4
5	Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
6	Contrasting dynamical responses of sympatric caribou and muskoxen to winter weather and earlier spring green-up in the Arctic. Food Webs, 2021, 27, e00196.	0.5	9
7	Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 2021, 12, 3442.	5.8	56
8	Demographic Consequences of Phenological Shifts in Response to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 221-245.	3.8	67
9	Regional variation in green-up timing along a caribou migratory corridor: Spatial associations with snowmelt and temperature. Arctic, Antarctic, and Alpine Research, 2020, 52, 416-423.	0.4	10
10	Divergence of Arctic shrub growth associated with sea ice decline. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33334-33344.	3.3	43
11	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
12	Unusual late July observation of a fledgling Lapland longspur in low Arctic Greenland following the cool spring of 2018. Arctic Science, 2019, 5, 161-166.	0.9	4
13	Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environmental Research Letters, 2019, 14, 074027.	2.2	38
14	The polar regions in a 2°C warmer world. Science Advances, 2019, 5, eaaw9883.	4.7	289
15	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	3.4	79
16	Acceleration of phenological advance and warming with latitude over the past century. Scientific Reports, 2018, 8, 3927.	1.6	95
17	Effects of sea ice on Arctic biota: an emerging crisis discipline. Biology Letters, 2018, 14, 20170702.	1.0	36
18	Declining growth of deciduous shrubs in the warming climate of continental western Greenland. Journal of Ecology, 2018, 106, 640-654.	1.9	53

#	Article	IF	CITATIONS
19	Environmental change and impacts in the Kangerlussuaq area, West Greenland. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	4
20	Effects of large herbivores on tundra vegetation in a changing climate, and implications for rewilding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170437.	1.8	58
21	Effects of sea ice on Arctic biota. Biology Letters, 2018, 14, 20180265.	1.0	1
22	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
23	On the sensitivity of root and leaf phenology to warming in the Arctic. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	10
24	Implications of earlier sea ice melt for phenological cascades in arctic marine food webs. Food Webs, 2017, 13, 60-66.	0.5	37
25	Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 2017, 23, 2660-2671.	4.2	171
26	Carbon and water relations of contrasting Arctic plants: implications for shrub expansion in West Greenland. Ecosphere, 2016, 7, e01245.	1.0	13
27	Root phenology in an Arctic shrub-graminoid community: the effects of long-term warming and herbivore exclusion. Climate Change Responses, 2016, 3, .	2.6	16
28	Highly individualistic rates of plant phenological advance associated with arctic sea ice dynamics. Biology Letters, 2016, 12, 20160332.	1.0	19
29	Variation in stability of elk and red deer populations with abiotic and biotic factors at the speciesâ€distribution scale. Ecology, 2016, 97, 3184-3194.	1.5	7
30	Greater Abundance of Betula nana and Early Onset of the Growing Season Increase Ecosystem CO2 Uptake in West Greenland. Ecosystems, 2016, 19, 1149-1163.	1.6	21
31	Limited variation in proportional contributions of auto- and heterotrophic soil respiration, despite large differences in vegetation structure and function in the Low Arctic. Biogeochemistry, 2016, 127, 339-351.	1.7	9
32	Root phenology in a changing climate. Journal of Experimental Botany, 2016, 67, 3617-3628.	2.4	95
33	Anticipating novel conservation risks of increased human access to remote regions with warming. Climate Change Responses, 2015, 2, .	2.6	3
34	Implications of Arctic Sea Ice Decline for the Earth System. Annual Review of Environment and Resources, 2014, 39, 57-89.	5.6	82
35	Advancing plant phenology and reduced herbivore production in a terrestrial system associated with sea ice decline. Nature Communications, 2013, 4, 2514.	5.8	60
36	Ecological Consequences of Sea-Ice Decline. Science, 2013, 341, 519-524.	6.0	461

#	Article	IF	CITATIONS
37	Erosion of community diversity and stability by herbivore removal under warming. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122722.	1.2	67
38	Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nature Climate Change, 2013, 3, 759-763.	8.1	184
39	Advancing the long view of ecological change in tundra systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120477.	1.8	20
40	Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120484.	1.8	76
41	Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecology Letters, 2012, 15, 1415-1422.	3.0	93
42	Warming leads to divergent responses but similarly improved performance of two invasive thistles. Population Ecology, 2012, 54, 583-589.	0.7	8
43	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	3.0	764
44	Large herbivores limit <scp><scp>CO</scp></scp> ₂ uptake and suppress carbon cycle responses to warming in <scp>W</scp> est <scp>G</scp> reenland. Global Change Biology, 2012, 18, 469-479.	4.2	83
45	Birth seasonality and offspring production in threatened neotropical primates related to climate. Global Change Biology, 2011, 17, 3035-3045.	4.2	19
46	Wolverines and declining snowpack: response to comments. Population Ecology, 2011, 53, 267-269.	0.7	4
47	Nonlinear responses of wolverine populations to declining winter snowpack. Population Ecology, 2010, 52, 279-287.	0.7	31
48	The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3177-3186.	1.8	501
49	Seasons and Life Cycles. Science, 2009, 324, 886-887.	6.0	117
50	Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science, 2009, 325, 1355-1358.	6.0	1,043
51	Interactions between herbivory and warming in aboveground biomass production of arctic vegetation. BMC Ecology, 2008, 8, 17.	3.0	16
52	Opposing plant community responses to warming with and without herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12353-12358.	3.3	411
53	Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2367-2373.	1.8	491
54	Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2005-2013.	1.2	155

#	Article	IF	CITATIONS
55	Population Dynamical Responses to Climate Change. Advances in Ecological Research, 2008, 40, 391-419.	1.4	29
56	Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 2007, 5, 145-152.	1.9	401
57	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. Evolution; International Journal of Organic Evolution, 2007, 55, 830-834.	1.1	4
58	Rapid advancement of spring in the High Arctic. Current Biology, 2007, 17, R449-R451.	1.8	256
59	Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Global Change Biology, 2006, 12, 403-409.	4.2	93
60	LOCAL-SCALE AND SHORT-TERM HERBIVORE–PLANT SPATIAL DYNAMICS REFLECT INFLUENCES OF LARGE-SCALE CLIMATE. Ecology, 2005, 86, 2644-2651.	1.5	42
61	LARGE-SCALE SPATIAL GRADIENTS IN HERBIVORE POPULATION DYNAMICS. Ecology, 2005, 86, 2320-2328.	1.5	64
62	Living in synchrony on Greenland coasts?. Nature, 2004, 427, 698-698.	13.7	1
63	From The Cover: Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9286-9290.	3.3	87
64	Using large-scale climate indices in climate change ecology studies. Population Ecology, 2004, 46, 1.	0.7	81
65	Synchrony between caribou calving and plant phenology in depredated and non-depredated populations. Canadian Journal of Zoology, 2003, 81, 1709-1714.	0.4	93
66	LARGE-SCALE CLIMATE SYNCHRONIZES THE TIMING OF FLOWERING BY MULTIPLE SPECIES. , 2003, 84, 277.		1
67	PHASE DEPENDENCE AND POPULATION CYCLES IN A LARGE-MAMMAL PREDATOR–PREY SYSTEM. Ecology, 2002, 83, 2997-3002.	1.5	21
68	North Atlantic Oscillation timing of long- and short-distance migration. Journal of Animal Ecology, 2002, 71, 1002-1014.	1.3	158
69	Synchronization of animal population dynamics by large-scale climate. Nature, 2002, 420, 168-171.	13.7	297
70	Ecological responses to recent climate change. Nature, 2002, 416, 389-395.	13.7	7,926
71	Ecological effects of the North Atlantic Oscillation. Oecologia, 2001, 128, 1-14.	0.9	649
72	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. Evolution; International Journal of Organic Evolution, 2001, 55, 830.	1.1	26

#	Article	IF	CITATIONS
73	Title is missing!. Landscape Ecology, 2000, 15, 535-546.	1.9	124
74	Can environmental fluctuation prevent competitive exclusion in sympatric flycatchers?. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1247-1251.	1.2	54
75	Ecosystem consequences of wolf behavioural response to climate. Nature, 1999, 401, 905-907.	13.7	326
76	CLIMATIC VARIABILITY, PLANT PHENOLOGY, AND NORTHERN UNGULATES. Ecology, 1999, 80, 1322-1339.	1.5	525
77	Breeding phenology and climateâf›. Nature, 1998, 391, 29-30.	13.7	292
78	Largeâ€scale climatic fluctuation and population dynamics of moose and whiteâ€ŧailed deer. Journal of Animal Ecology, 1998, 67, 537-543.	1.3	170
79	Global climate change and phenotypic variation among red deer cohorts. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1317-1324.	1.2	189
80	Vigilance and foraging behaviour of female caribou in relation to predation risk. Rangifer, 1997, 17, 55.	0.6	48
81	Climate change, phenology and the nature of consumer–resource interactions. , 0, , 508-525.		27
82	Growth rings show limited evidence for ungulates' potential to suppress shrubs across the Arctic. Environmental Research Letters, 0, , .	2.2	6