
Sumit Bahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927431/publications.pdf Version: 2024-02-01

SUMIT RAM

#	Article	IF	CITATIONS
1	A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy. Acta Materialia, 2022, 227, 117699.	3.8	51
2	Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al–Cu–Mn–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142928.	2.6	15
3	Cavitation-resistant intergranular precipitates enhance creep performance of Î,′-strengthened Al-Cu based alloys. Acta Materialia, 2022, 228, 117788.	3.8	38
4	Effect of grain-boundary Î,-Al2Cu precipitates on tensile and compressive creep properties of cast Al–Cu–Mn–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142946.	2.6	19
5	Repurposing the Î, (Al2Cu) phase to simultaneously increase the strength and ductility of an additively manufactured Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143511.	2.6	7
6	Comprehensive review on alloy design, processing, and performance of <i>β</i> Titanium alloys as biomedical materials. International Materials Reviews, 2021, 66, 114-139.	9.4	71
7	Aging behavior and strengthening mechanisms of coarsening resistant metastable Î,' precipitates in an Al–Cu alloy. Materials and Design, 2021, 198, 109378.	3.3	62
8	The role of Si in determining the stability of the Î,′ precipitate in Al-Cu-Mn-Zr alloys. Journal of Alloys and Compounds, 2021, 862, 158152.	2.8	22
9	Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104552.	1.5	25
10	Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy. Acta Materialia, 2021, 220, 117285.	3.8	38
11	Al-Cu-Ce(-Zr) alloys with an exceptional combination of additive processability and mechanical properties. Additive Manufacturing, 2021, 48, 102404.	1.7	9
12	Effect of copper content on the tensile elongation of Al–Cu–Mn–Zr alloys: Experiments and finite element simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138801.	2.6	28
13	Influence of copper content on the high temperature tensile and low cycle fatigue behavior of cast Al-Cu-Mn-Zr alloys. International Journal of Fatigue, 2020, 140, 105836.	2.8	12
14	An additively manufactured AlCuMnZr alloy microstructure and tensile mechanical properties. Materialia, 2020, 12, 100758.	1.3	36
15	Primary solidification of ternary compounds in Al-rich Al–Ce–Mn alloys. Journal of Alloys and Compounds, 2020, 844, 156048.	2.8	21
16	Solute-vacancy clustering in aluminum. Acta Materialia, 2020, 196, 747-758.	3.8	96
17	Microstructure and properties of a high temperature Al–Ce–Mn alloy produced by additive manufacturing. Acta Materialia, 2020, 196, 595-608.	3.8	116
18	Role of aging induced \hat{I}_{\pm} precipitation on the mechanical and tribocorrosive performance of a \hat{I}^2 Ti-Nb-Ta-O orthopedic alloy. Materials Science and Engineering C, 2019, 103, 109755.	3.8	13

Sumit Bahl

#	Article	IF	CITATIONS
19	Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Additive Manufacturing, 2019, 28, 65-77.	1.7	73
20	Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Materialia, 2019, 162, 239-254.	3.8	214
21	Process mediated polymorphism, crystallographic texture and structure-property correlation in crystalline/amorphous blends. Polymer, 2018, 138, 307-319.	1.8	14
22	Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications. Materials and Design, 2018, 144, 169-181.	3.3	35
23	Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 124-133.	1.5	44
24	Retardation of Small Creep–Fatigue Crack in Gr. 91 Steel Through the Combined Effects of Stress Relaxation, Microstructural Evolution, and Oxidation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6110-6121.	1.1	4
25	Variant selection in metastable β Ti-V-Fe-Al alloy during triaxial and uniaxial compression. Materialia, 2018, 4, 20-32.	1.3	11
26	Surface Severe Plastic Deformation of an Orthopedic Ti–Nb–Sn Alloy Induces Unusual Precipitate Remodeling and Supports Stem Cell Osteogenesis through Akt Signaling. ACS Biomaterials Science and Engineering, 2018, 4, 3132-3142.	2.6	18
27	Establishing the microstructure-strengthening correlation in severely deformed surface of titanium. Philosophical Magazine, 2018, 98, 2095-2119.	0.7	7
28	Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable β Ti-Nb-Sn alloy for orthopedic applications. Materials and Design, 2017, 126, 226-237.	3.3	55
29	Processing–Microstructure–Crystallographic Texture–Surface Property Relationships in Friction Stir Processing of Titanium. Journal of Materials Engineering and Performance, 2017, 26, 4206-4216.	1.2	13
30	Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel. Acta Materialia, 2017, 122, 138-151.	3.8	115
31	Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale, 2015, 7, 7704-7716.	2.8	63
32	Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Materials Chemistry and Physics, 2015, 166, 144-152.	2.0	37
33	Effect of boron addition and processing of Ti–6Al–4V on corrosion behaviour and biocompatibility. Materials Technology, 2014, 29, B64-B68.	1.5	14
34	The control of crystallographic texture in the use of magnesium as a resorbable biomaterial. RSC Advances, 2014, 4, 55677-55684.	1.7	24
35	The importance of crystallographic texture in the use of titanium as an orthopedic biomaterial. RSC Advances, 2014, 4, 38078-38087.	1.7	37
36	Role of Substrate Temperature in the Pulsed Laser Deposition of Zirconium Oxide Thin Film. Materials Science Forum, 0, 710, 757-761.	0.3	11