Kimmo Juhani Kartasalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926952/publications.pdf

Version: 2024-02-01

26 papers 3,116 citations

686830 13 h-index 610482 24 g-index

26 all docs

26 docs citations

times ranked

26

5147 citing authors

#	Article	IF	CITATIONS
1	Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine, 2022, 28, 154-163.	15.2	143
2	Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment. Heliyon, 2022, 8, e08762.	1.4	6
3	Detection of perineural invasion in prostate needle biopsies with deep neural networks. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 73-82.	1.4	7
4	Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics, 2022, 38, 3462-3469.	1.8	9
5	Interobserver reproducibility of perineural invasion of prostatic adenocarcinoma in needle biopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 1109-1116.	1.4	7
6	Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsiesâ€"Current Status and Next Steps. European Urology Focus, 2021, 7, 687-691.	1.6	18
7	OpenPhi: an interface to access Philips iSyntax whole slide images for computational pathology. Bioinformatics, 2021, 37, 3995-3997.	1.8	3
8	Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression–Morphology Analysis in Breast Cancer. Cancer Research, 2021, 81, 5115-5126.	0.4	32
9	The emerging role of artificial intelligence in the reporting of prostate pathology. Pathology, 2021, 53, 565-567.	0.3	O
10	Morphological Features Extracted by Al Associated with Spatial Transcriptomics in Prostate Cancer. Cancers, 2021, 13, 4837.	1.7	15
11	Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration. BMC Cancer, 2021, 21, 1133.	1.1	13
12	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology, The, 2020, 21, 222-232.	5.1	364
13	The utility of artificial intelligence in the assessment of prostate pathology. Histopathology, 2020, 76, 790-792.	1.6	9
14	Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 477, 777-786.	1.4	20
15	ANHIR: Automatic Non-Rigid Histological Image Registration Challenge. IEEE Transactions on Medical Imaging, 2020, 39, 3042-3052.	5.4	75
16	The importance of study design in the application of artificial intelligence methods in medicine. Npj Digital Medicine, 2019, 2, 101.	5.7	2
17	Deep Learning in Image Cytometry: A Review. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 366-380.	1.1	145
18	Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation towards Osteogenic and Adipogenic Lineages. Stem Cells International, 2018, 2018, 1-13.	1,2	31

#	Article	IF	CITATIONS
19	Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics, 2018, 34, 3013-3021.	1.8	30
20	Metastasis detection from whole slide images using local features and random forests. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 555-565.	1.1	37
21	Analysis of spatial heterogeneity in normal epithelium and preneoplastic alterations in mouse prostate tumor models. Scientific Reports, 2017, 7, 44831.	1.6	10
22	A durable and biocompatible ascorbic acid-based covalent coating method of polydimethylsiloxane for dynamic cell culture. Journal of the Royal Society Interface, 2017, 14, 20170318.	1.5	15
23	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	3.8	2,003
24	A software tool for studying the size and shape of human cardiomyocytes. Biomedical Signal Processing and Control, 2016, 30, 134-139.	3.5	0
25	CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics, 2015, 16, 344.	1.2	54
26	Transcriptome Sequencing Reveals <i>PCAT5</i> as a Novel ERG-Regulated Long Noncoding RNA in Prostate Cancer. Cancer Research, 2015, 75, 4026-4031.	0.4	68