Kimmo Juhani Kartasalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	3.8	2,003
2	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology, The, 2020, 21, 222-232.	5.1	364
3	Deep Learning in Image Cytometry: A Review. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 366-380.	1.1	145
4	Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine, 2022, 28, 154-163.	15.2	143
5	ANHIR: Automatic Non-Rigid Histological Image Registration Challenge. IEEE Transactions on Medical Imaging, 2020, 39, 3042-3052.	5.4	75
6	Transcriptome Sequencing Reveals <i>PCAT5</i> as a Novel ERG-Regulated Long Noncoding RNA in Prostate Cancer. Cancer Research, 2015, 75, 4026-4031.	0.4	68
7	CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics, 2015, 16, 344.	1.2	54
8	Metastasis detection from whole slide images using local features and random forests. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 555-565.	1.1	37
9	Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression–Morphology Analysis in Breast Cancer. Cancer Research, 2021, 81, 5115-5126.	0.4	32
10	Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation towards Osteogenic and Adipogenic Lineages. Stem Cells International, 2018, 2018, 1-13.	1.2	31
11	Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics, 2018, 34, 3013-3021.	1.8	30
12	Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 477, 777-786.	1.4	20
13	Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies—Current Status and Next Steps. European Urology Focus, 2021, 7, 687-691.	1.6	18
14	A durable and biocompatible ascorbic acid-based covalent coating method of polydimethylsiloxane for dynamic cell culture. Journal of the Royal Society Interface, 2017, 14, 20170318.	1.5	15
15	Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer. Cancers, 2021, 13, 4837.	1.7	15
16	Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration. BMC Cancer, 2021, 21, 1133.	1.1	13
17	Analysis of spatial heterogeneity in normal epithelium and preneoplastic alterations in mouse prostate tumor models. Scientific Reports, 2017, 7, 44831.	1.6	10
18	The utility of artificial intelligence in the assessment of prostate pathology. Histopathology, 2020, 76, 790-792.	1.6	9

#	Article	lF	CITATIONS
19	Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics, 2022, 38, 3462-3469.	1.8	9
20	Interobserver reproducibility of perineural invasion of prostatic adenocarcinoma in needle biopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 1109-1116.	1.4	7
21	Detection of perineural invasion in prostate needle biopsies with deep neural networks. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 73-82.	1.4	7
22	Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment. Heliyon, 2022, 8, e08762.	1.4	6
23	OpenPhi: an interface to access Philips iSyntax whole slide images for computational pathology. Bioinformatics, 2021, 37, 3995-3997.	1.8	3
24	The importance of study design in the application of artificial intelligence methods in medicine. Npj Digital Medicine, 2019, 2, 101.	5.7	2
25	A software tool for studying the size and shape of human cardiomyocytes. Biomedical Signal Processing and Control, 2016, 30, 134-139.	3.5	0
26	The emerging role of artificial intelligence in the reporting of prostate pathology. Pathology, 2021, 53, 565-567.	0.3	0