

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Angiogenesis. Stroke, 2012, 43, 2270-2274.	1.0	224
2	NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacological Research, 2019, 142, 237-250.	3.1	151
3	Cerebrovascular Complications of Diabetes: Focus on Stroke. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 148-158.	0.6	149
4	Endothelin-1 and diabetic complications: Focus on the vasculature. Pharmacological Research, 2011, 63, 477-482.	3.1	118
5	Type 2 Diabetes Causes Remodeling of Cerebrovasculature via Differential Regulation of Matrix Metalloproteinases and Collagen Synthesis: Role of Endothelin-1. Diabetes, 2005, 54, 2638-2644.	0.3	111
6	Hyperglycemia, Acute Ischemic Stroke, and Thrombolytic Therapy. Translational Stroke Research, 2014, 5, 442-453.	2.3	102
7	Hyperglycemia, diabetes and stroke: Focus on the cerebrovasculature. Vascular Pharmacology, 2009, 51, 44-49.	1.0	98
8	Hypertension in Black Patients. Hypertension, 2000, 36, 62-67.	1.3	95
9	Cerebral Neovascularization in Diabetes: Implications for Stroke Recovery and beyond. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 553-563.	2.4	86
10	Vascular Protection in Diabetic Stroke: Role of Matrix Metalloprotease-Dependent Vascular Remodeling. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1928-1938.	2.4	79
11	Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacological Research, 2019, 147, 104349.	3.1	74
12	Minocycline in Acute Cerebral Hemorrhage. Stroke, 2017, 48, 2885-2887.	1.0	65
13	Metformin Treatment in the Period After Stroke Prevents Nitrative Stress and Restores Angiogenic Signaling in the Brain in Diabetes. Diabetes, 2015, 64, 1804-1817.	0.3	64
14	Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clinical Science, 2016, 130, 1807-1822.	1.8	63
15	Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes. Translational Stroke Research, 2016, 7, 248-260.	2.3	55
16	Comparative analysis of the neurovascular injury and functional outcomes in experimental stroke models in diabetic Goto-Kakizaki rats. Brain Research, 2013, 1541, 106-114.	1.1	52
17	Comparative Analysis of Different Methods of Ischemia/Reperfusion in Hyperglycemic Stroke Outcomes: Interaction with tPA. Translational Stroke Research, 2015, 6, 171-180.	2.3	51
18	Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. , 2018, 8, 773-799.		47

#	Article	IF	CITATIONS
19	Delayed Administration of Angiotensin II Type 2 Receptor (AT2R) Agonist Compound 21 Prevents the Development of Post-stroke Cognitive Impairment in Diabetes Through the Modulation of Microglia Polarization. Translational Stroke Research, 2020, 11, 762-775.	2.3	47
20	Cerebral Myogenic Reactivity and Blood Flow in Type 2 Diabetic Rats: Role of Peroxynitrite in Hypoxia-Mediated Loss of Myogenic Tone. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 407-415.	1.3	46
21	Role of interleukin-10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. European Journal of Pharmacology, 2017, 799, 128-134.	1.7	46
22	Stress upregulates arterial matrix metalloproteinase expression and activity via endothelin A receptor activation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2225-H2232.	1.5	44
23	Effect of chronic endothelin receptor antagonism on cerebrovascular function in type 2 diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1213-R1219.	0.9	44
24	Matrix Metalloprotease 3 Exacerbates Hemorrhagic Transformation and Worsens Functional Outcomes in Hyperglycemic Stroke. Stroke, 2016, 47, 843-851.	1.0	44
25	Glycemic control prevents microvascular remodeling and increased tone in Type 2 diabetes: link to endothelin-1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R952-R959.	0.9	43
26	Downregulation of vascular matrix metalloproteinase inducer and activator proteins in hypertensive patients. American Journal of Hypertension, 2004, 17, 775-782.	1.0	41
27	Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Molecular Neurobiology, 2017, 54, 661-670.	1.9	40
28	Poststroke cognitive impairment and hippocampal neurovascular remodeling: the impact of diabetes and sex. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1402-H1413.	1.5	37
29	Dual endothelin receptor antagonism with bosentan reverses established vascular remodeling and dysfunctional angiogenesis in diabetic rats: Relevance to glycemic control. Life Sciences, 2014, 118, 268-273.	2.0	34
30	Endothelin-1 and Endothelin Receptor Antagonists as Potential Cardiovascular Therapeutic Agents. Pharmacotherapy, 2002, 22, 54-65.	1.2	33
31	Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals – A randomized double- blind pre-clinical study. Behavioural Brain Research, 2018, 346, 29-40.	1.2	33
32	Microglia knockdown reduces inflammation and preserves cognition in diabetic animals after experimental stroke. Journal of Neuroinflammation, 2020, 17, 137.	3.1	33
33	Endothelial Endothelin B Receptor-Mediated Prevention of Cerebrovascular Remodeling Is Attenuated in Diabetes Because of Up-Regulation of Smooth Muscle Endothelin Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 9-15.	1.3	32
34	Endothelial stromelysin1 regulation by the forkhead box-O transcription factors is crucial in the exudative phase of acute lung injury. Pharmacological Research, 2019, 141, 249-263.	3.1	32
35	Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals—A randomized double- blind pre-clinical study. Behavioural Brain Research, 2019, 359, 560-569.	1.2	32
36	ET-1 in the myocardial interstitium: relation to myocyte ECE activity and expression. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H2050-H2056.	1.5	31

#	Article	IF	CITATIONS
37	Relationship of endothelin-1 and NLRP3 inflammasome activation in HT22 hippocampal cells in diabetes. Life Sciences, 2016, 159, 97-103.	2.0	29
38	Brain Vasculature and Cognition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 593-602.	1.1	26
39	Combined therapy with COX-2 inhibitor and 20-HETE inhibitor reduces colon tumor growth and the adverse effects of ischemic stroke associated with COX-2 inhibition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R693-R703.	0.9	25
40	Linagliptin treatment improves cerebrovascular function and remodeling and restores reduced cerebral perfusion in Type 2 diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R466-R477.	0.9	25
41	Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Research, 2015, 1623, 81-96.	1.1	23
42	Late dual endothelin receptor blockade with bosentan restores impaired cerebrovascular function in diabetes. Life Sciences, 2014, 118, 263-267.	2.0	22
43	High-fat diet increases <i>O</i> -GlcNAc levels in cerebral arteries: a link to vascular dysfunction associated with hyperlipidaemia/obesity?. Clinical Science, 2016, 130, 871-880.	1.8	22
44	Enhanced VEGF signalling mediates cerebral neovascularisation via downregulation of guidance protein ROBO4 in a rat model of diabetes. Diabetologia, 2017, 60, 740-750.	2.9	22
45	Reduced vascular responses to soluble guanylyl cyclase but increased sensitivity to sildenafil in female rats with type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H297-H304.	1.5	21
46	TLR2 knockout protects against diabetes-mediated changes in cerebral perfusion and cognitive deficits. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R927-R937.	0.9	21
47	Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: a pilot study. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1192-H1201.	1.5	19
48	Post-stroke neovascularization and functional outcomes differ in diabetes depending on severity of injury and sex: Potential link to hemorrhagic transformation. Experimental Neurology, 2019, 311, 106-114.	2.0	18
49	Stroke promotes the development of brain atrophy and delayed cell death in hypertensive rats. Scientific Reports, 2020, 10, 20233.	1.6	17
50	SOD1 overexpression prevents acute hyperglycemia-induced cerebral myogenic dysfunction: relevance to contralateral hemisphere and stroke outcomes. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H456-H466.	1.5	16
51	Linagliptin attenuates diabetes-induced cerebral pathological neovascularization in a blood glucose-independent manner: Potential role of ET-1. Life Sciences, 2016, 159, 83-89.	2.0	16
52	Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes. Translational Research, 2014, 164, 424-432.	2.2	16
53	Deletion of Thioredoxin Interacting Protein (TXNIP) Augments Hyperoxia-Induced Vaso-Obliteration in a Mouse Model of Oxygen Induced-Retinopathy. PLoS ONE, 2014, 9, e110388.	1.1	14
54	Elevated Endothelin-1 Levels Are Associated With Decreased Arterial Elasticity in Hypertensive Patients. Journal of Clinical Hypertension, 2006, 8, 549-554.	1.0	13

#	Article	IF	CITATIONS
55	Comparison of selective versus dual endothelin receptor antagonism on cerebrovascular dysfunction in diabetes. Neurological Research, 2011, 33, 185-191.	0.6	13
56	Progress and challenges in preclinical stroke recovery research. Brain Circulation, 2021, 7, 230.	0.7	13
57	Response to Letter Regarding Article, "Matrix Metalloprotease 3 Exacerbates Hemorrhagic Transformation and Worsens Functional Outcomes in Hyperglycemic Stroke― Stroke, 2016, 47, e173.	1.0	11
58	Diabetes-mediated middle cerebral artery remodeling is restored by linagliptin: Interaction with the vascular smooth muscle cell endothelin system. Life Sciences, 2016, 159, 76-82.	2.0	11
59	Diabetic Stroke Promotes a Sexually Dimorphic Expansion of T Cells. NeuroMolecular Medicine, 2019, 21, 445-453.	1.8	11
60	Nox4 contributes to the hypoxia-mediated regulation of actin cytoskeleton in cerebrovascular smooth muscle. Life Sciences, 2016, 163, 46-54.	2.0	10
61	Linagliptin reduces effects of ET-1 and TLR2-mediated cerebrovascular hyperreactivity in diabetes. Life Sciences, 2016, 159, 90-96.	2.0	10
62	Neurovascular protection in voltageâ€gated proton channel Hv1 knockâ€out rats after ischemic stroke: interaction with Na ⁺ /H ⁺ exchangerâ€1 antagonism. Physiological Reports, 2019, 7, e14142.	0.7	9
63	Cerebral Microvascular Senescence and Inflammation in Diabetes. Frontiers in Physiology, 2022, 13, 864758.	1.3	9
64	25Years of endothelin research: the next generation. Life Sciences, 2014, 118, 77-86.	2.0	8
65	Diabetes-related sex differences in the brain endothelin system following ischemia in vivo and in human brain endothelial cells in vitro. Canadian Journal of Physiology and Pharmacology, 2020, 98, 587-595.	0.7	7
66	Potential role of endothelin receptor antagonists in the setting of cardiopulmonary bypass: relevance to myocardial performance. Heart Failure Reviews, 2001, 6, 287-294.	1.7	6
67	Development of endothelin receptor antagonists as potential therapeutic agents. Expert Opinion on Therapeutic Patents, 2003, 13, 33-44.	2.4	6
68	Diabetic rats are more susceptible to cognitive decline in a model of microemboli-mediated vascular contributions to cognitive impairment and dementia. Brain Research, 2020, 1749, 147132.	1.1	6
69	Endothelin-1 (ET-1) promotes a proinflammatory microglia phenotype in diabetic conditions. Canadian Journal of Physiology and Pharmacology, 2020, 98, 596-603.	0.7	6
70	Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke. Vascular Pharmacology, 2021, 141, 106904.	1.0	6
71	Novel Targets and Interventions for Cognitive Complications of Diabetes. Frontiers in Physiology, 2021, 12, 815758.	1.3	6
72	Impact of diabetes and ischemic stroke on the cerebrovasculature: A female perspective. Neurobiology of Disease, 2022, 167, 105667.	2.1	5

#	Article	IF	CITATIONS
73	Role of Matrix Metalloproteinase Activity in the Neurovascular Protective Effects of Angiotensin Antagonism. Stroke Research and Treatment, 2014, 2014, 1-9.	0.5	4
74	The contribution of Toll-like receptors to placental inflammation in diet-induced maternal obesity. Placenta, 2015, 36, 1204-1206.	0.7	4
75	Secretion of endothelin converting enzyme-1a: the hydrophobic signal anchor domain alone is not sufficient to promote membrane localization. Molecular and Cellular Biochemistry, 2000, 208, 45-51.	1.4	3
76	Artery reopening is required for the neurorestorative effects of angiotensin modulation after experimental stroke. Experimental & Translational Stroke Medicine, 2016, 8, 4.	3.2	2
77	<i>Porphyromonas gingivalis</i> infection upregulates the endothelin (ET) system in brain microvascular endothelial cells. Canadian Journal of Physiology and Pharmacology, 2022, 100, 679-688.	0.7	2
78	Variations on a theme: ET-14 notes from mentor and trainees. Life Sciences, 2016, 159, 12-14.	2.0	1
79	Inhibition of Ferroptosis Using UAMCâ€3203 in the Postâ€stroke Period Does Not Impact Cognitive Outcomes in Diabetic Rats. FASEB Journal, 2022, 36, .	0.2	1
80	Reply to "Letter to the editor: †Targeting cerebrovascular myogenic dysfunction in stroke'― American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1483-H1483.	1.5	0
81	Insulin signaling in Gotoâ€Kakizaki rat model of type II diabetes. FASEB Journal, 2008, 22, 1226.42.	0.2	0
82	Increased cavernosal relaxation in type 2 diabetic Gotoâ€Kakizaki rats. FASEB Journal, 2008, 22, 1226.13.	0.2	0
83	Ischemic injury, hemorrhagic transformation and plasma MMPâ€9 profile in experimental diabetes vs. hyperglycemia. FASEB Journal, 2009, 23, LB41.	0.2	0
84	Temporal profile of focal cerebral ischemic damage in type 2 diabetes. FASEB Journal, 2009, 23, 774.7.	0.2	0
85	Hypoxia reduces cerebrovascular myogenic reactivity in diabetes. FASEB Journal, 2010, 24, 602.4.	0.2	0
86	Acute hyperglycemia augments neurovascular injury in diabetes. FASEB Journal, 2010, 24, 591.10.	0.2	0
87	Type 2 diabetesâ€induced vascular dysfunction is associated with caveolinâ€1 and NADPH oxidase. FASEB Journal, 2012, 26, .	0.2	0
88	28 Weekâ€old Typeâ€2 Diabetic Gotoâ€Kakizaki Rats Exhibit a Reduction to Insulinâ€Mediated Vasorelaxation in Middle Cerebral Arteries. FASEB Journal, 2015, 29, 1044.8.	0.2	0
89	Stimulation of Angiotensin II Receptor 2 Preserves Cognitive Function Post Stroke and is Associated with an Enhanced Cerebral Vascular Density in Female Rats FASEB Journal, 2020, 34, 1-1.	0.2	0
90	395 Vascular Cognitive Impairment: Novel Endothelial Mechanisms and the Impact of Dietary PUFAs. Journal of Clinical and Translational Science, 2022, 6, 74-74.	0.3	0

ADVIYE	

#	Article	IF	CITATIONS
91	Enriched Housing Rehabilitation for Stroke Recovery in Spontaneously Hypertensive Rats. FASEB Journal, 2022, 36, .	0.2	0