Sathiyanarayanan Manivannan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926823/publications.pdf

Version: 2024-02-01

1163117 1058476 17 236 8 14 citations h-index g-index papers 23 23 23 369 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>De novo FZR1</i> loss-of-function variants cause developmental and epileptic encephalopathies. Brain, 2022, 145, 1684-1697.	7.6	5
2	Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Reports, 2022, 38, 110517.	6.4	24
3	Single-Cell RNA Sequencing Reveals Novel Genes Regulated by Hypoxia in the Lung Vasculature. Journal of Vascular Research, 2022, 59, 163-175.	1.4	4
4	Nitric oxide prevents a ortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Science Advances, 2021, 7, .	10.3	43
5	A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Frontiers in Cardiovascular Medicine, 2021, 8, 683074.	2.4	2
6	miR $\hat{a}\in 145$ transgenic mice develop cardiopulmonary complications leading to postnatal death. Physiological Reports, 2021, 9, e15013.	1.7	1
7	Generation of transgenic mice that conditionally express <scp>microRNA <i>miR</i></scp> <i>â€145</i> . Genesis, 2020, 58, e23385.	1.6	2
8	Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genetics, 2020, 16, e1008639.	3.5	16
9	Flip-flop Mediated Conditional Gene Inactivation in Drosophila. Bio-protocol, 2019, 9, .	0.4	3
10	A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. ELife, $2017, 6, .$	6.0	23
11	Targeted genetics in Drosophila cell lines: Inserting single transgenes in vitro. Fly, 2016, 10, 134-141.	1.7	3
12	Targeted Integration of Single-Copy Transgenes in <i>Drosophila melanogaster</i> Tissue-Culture Cells Using Recombination-Mediated Cassette Exchange. Genetics, 2015, 201, 1319-1328.	2.9	15
13	Transcriptional Control of an Essential Ribozyme in Drosophila Reveals an Ancient Evolutionary Divide in Animals. PLoS Genetics, 2015, 11, e1004893.	3.5	5
14	TGF- $\hat{l}\pm$ ligands can substitute for the neuregulin Vein in Drosophila development. Development (Cambridge), 2014, 141, 4110-4114.	2.5	7
15	Dpp-induced Egfr signaling triggers postembryonic wing development in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5058-5063.	7.1	41
16	New Negative Feedback Regulators of Egfr Signaling in <i>Drosophila</i> . Genetics, 2012, 191, 1213-1226.	2.9	24
17	Loss of the Tumor Suppressor Pten Promotes Proliferation of Drosophila melanogaster Cells In Vitro and Gives Rise to Continuous Cell Lines. PLoS ONE, 2012, 7, e31417.	2.5	9

2