
Khalid Meksem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	QTL and Candidate Genes for Seed Tocopherol Content in †Forrest' by †Williams 82' Recombinant Ir Line (RIL) Population of Soybean. Plants, 2022, 11, 1258.	ibred 1.6	3
2	Dissecting nematode resistance regions in soybean revealed pleiotropic effect of soybean cyst and reniform nematode resistance genes. Plant Genome, 2021, 14, e20083.	1.6	12
3	TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. International Journal of Molecular Sciences, 2021, 22, 4219.	1.8	12
4	TILLING-by-Sequencing+ Reveals the Role of Novel Fatty Acid Desaturases (GmFAD2-2s) in Increasing Soybean Seed Oleic Acid Content. Cells, 2021, 10, 1245.	1.8	19
5	Genome Wide MeDIP-Seq Profiling of Wild and Cultivated Olives Trees Suggests DNA Methylation Fingerprint on the Sensory Quality of Olive Oil. Plants, 2021, 10, 1405.	1.6	6
6	Genome-wide identification and analysis of soybean acyl-ACP thioesterase gene family reveals the role of GmFAT to improve fatty acid composition in soybean seed. Theoretical and Applied Genetics, 2021, 134, 3611-3623.	1.8	20
7	The Soybean High Density â€~Forrest' by â€~Williams 82' SNP-Based Genetic Linkage Map Identifies QTL Candidate Genes for Seed Isoflavone Content. Plants, 2021, 10, 2029.	and 1.6	10
8	Soybean TILLING-by-Sequencing+ reveals the role of novel GmSACPD members in unsaturated fatty acid biosynthesis while maintaining healthy nodules. Journal of Experimental Botany, 2020, 71, 6969-6987.	2.4	22
9	EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production. Microorganisms, 2020, 8, 1239.	1.6	8
10	Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. New Phytologist, 2020, 227, 168-184.	3.5	27
11	Mutations at the Serine Hydroxymethyltransferase Impact Its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines, 2020, 8, 349.	2.1	18
12	A pathogenesisâ€related protein GmPR08â€Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to <i>Heterodera glycines</i> . Plant Biotechnology Journal, 2020, 18, 1810-1829.	4.1	29
13	Wholeâ€genome reâ€sequencing reveals the impact of the interaction of copy number variants of the <i>rhg1</i> and <i>Rhg4</i> genes on broadâ€based resistance to soybean cyst nematode. Plant Biotechnology Journal, 2019, 17, 1595-1611.	4.1	65
14	Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Scientific Reports, 2019, 9, 1506.	1.6	24
15	Assessment of Phenotypic Variations and Correlation among Seed Composition Traits in Mutagenized Soybean Populations. Genes, 2019, 10, 975.	1.0	18
16	Detection of QTL underlying seed quality components in soybean [<i>Glycine max</i> (L.) Merr.]. Canadian Journal of Plant Science, 2018, 98, 881-888.	0.3	9
17	Evaluation of Soybean Germplasm for Resistance to Multiple Nematode Species: Heterodera glycines , Meloidogyne incognita , and Rotylenchulus reniformis. Crop Science, 2018, 58, 2511-2522.	0.8	21
18	Nonhypothesis Analysis of a Mutagenic Soybean (<scp><i>Glycine max</i></scp> [L.]) Population for Protein and Fattyâ€Acid Composition. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 461-471.	0.8	3

#	Article	IF	CITATIONS
19	Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen. Scientific Reports, 2017, 7, 45226.	1.6	69
20	Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure. Plant Physiology, 2017, 174, 1531-1543.	2.3	35
21	The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nature Communications, 2017, 8, 14822.	5.8	91
22	Soybean Genomic Libraries, TILLING, and Genetic Resources. Compendium of Plant Genomes, 2017, , 131-149.	0.3	4
23	Systematic Mutagenesis of Serine Hydroxymethyltransferase Reveals an Essential Role in Nematode Resistance Â. Plant Physiology, 2017, 175, 1370-1380.	2.3	43
24	Neodiversification of homeologous CLAVATA1-like receptor kinase genes in soybean leads to distinct developmental outcomes. Scientific Reports, 2017, 7, 8878.	1.6	25
25	Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number. Frontiers in Plant Science, 2017, 8, 324.	1.7	64
26	Genetic Mapping of QTL Associated with Seed Macronutrients Accumulation in â€~MD 96-5722' by â€~Spencer' Recombinant Inbred Lines of Soybean. Atlas Journal of Biology, 2017, 3, 224-235.	0.1	5
27	Quantitative Trait Loci (QTL) that Underlie SCN Resistance in Soybean [Glycine max (L.) Merr.] Pl438489B by â€~Hamilton' Recombinant Inbred Line (RIL) Population. Atlas Journal of Plant Biology, 2017, 1, 29-38.	0.1	5
28	Identification of QTL Underlying Seed Micronutrients Accumulation in â€~MD 96-5722' by â€~Spencer' Recombinant Inbred Lines of Soybean. Atlas Journal of Plant Biology, 2017, 1, 39-49.	0.1	6
29	Genetic Analysis of Root and Shoot Traits in the †Essex' By †Forrest' Recombinant Inbred Line (RIL) Population of Soybean [Glycine max (L.) Merr.]. Journal of Plant Genome Sciences, 2017, 1, 1-9.	0.2	12
30	The †PI 438489B' by †Hamilton' SNP-Based Genetic Linkage Map of Soybean [Glycine max (L.) Merr.] Identified Quantitative Trait Loci that Underlie Seedling SDS Resistance. Journal of Plant Genome Sciences, 2017, 1, 18-30.	0.2	8
31	Genetic Analysis of Relative Water Content (RWC) in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.]. Journal of Plant Genome Sciences, 2017, 1, 46-53.	0.2	3
32	A SNP-Based Genetic Linkage Map of Soybean Using the SoySNP6K Illumina Infinium BeadChip Genotyping Array. Journal of Plant Genome Sciences, 2017, 1, 80-89.	0.2	20
33	Transcript Abundance Responses of Resistance Pathways of Arabidopsis thaliana to Deoxynivalenol. Atlas Journal of Biology, 2017, 2, 154-161.	0.1	0
34	Effect of Two Row Spaces on Several Agronomic Traits in Soybean [Glycine max (L.) Merr.]. Atlas Journal of Plant Biology, 2017, 1, 18-23.	0.1	2
35	Evaluation of Several Agronomic Traits in †Essex' By †Forrest' Recombinant Inbred Line Population of Soybean [Glycine max (L.) Merr.]. Atlas Journal of Plant Biology, 2017, 1, 13-17.	0.1	3
36	The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants, 2016, 2, 16167.	4.7	90

#	Article	IF	CITATIONS
37	Correlation between the Chemical and Genetic Relationships among <i>Thymus saturejoides</i> Genotypes Cultured under <i>inÂvitro</i> and <i>inÂvivo</i> Environments. Chemistry and Biodiversity, 2016, 13, 387-394.	1.0	5
38	A SNP genetic linkage map based on the †Hamilton' by †Spencer' recombinant inbred line population identified QTL for seed isoflavone contents in soybean. Plant Breeding, 2015, 134, 580-588.	1.0	14
39	A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence. PLoS ONE, 2015, 10, e0145601.	1.1	41
40	SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics, 2015, 16, 314.	1.2	86
41	Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by â€~Spencer' recombinant inbred line population of soybean. 3 Biotech, 2015, 5, 203-210.	1.1	16
42	Quantitative Trait Loci Underlying Seed Sugars Content in "MD96-5722―by "Spencer―Recombinant Inbred Line Population of Soybean. Food and Nutrition Sciences (Print), 2015, 06, 964-973.	0.2	12
43	Mapping of QTL Associated with Seed Amino Acids Content in "MD96-5722―by "Spencer―RIL Population of Soybean Using SNP Markers. Food and Nutrition Sciences (Print), 2015, 06, 974-984.	on 0.2	11
44	Genetic Mapping of QTL Associated with Seed Macronutrients Accumulation in â€~MD 96-5722' by â€~Spencer' Recombinant In - bred Lines of Soybean. Atlas Journal of Biology, 2015, 3, 224-235.	0.1	0
45	Identification of QTL Underlying Seed Micronutrients Accumu - lation in â€~MD 96-5722' by â€~Spencer' Recombinant Inbred Lines of Soybean. Atlas Journal of Plant Biology, 2015, 1, 39-49.	0.1	0
46	Quantitative Trait Loci for Seed Isoflavone Contents in â€~MD96-5722' by â€~Spencer' Recombinant Inbre Lines of Soybean. Journal of Agricultural and Food Chemistry, 2014, 62, 1464-1468.	d 2.4	24
47	Identification of Quantitative Trait Loci (QTL) Underlying Protein, Oil, and Five Major Fatty Acids' Contents in Soybean. American Journal of Plant Sciences, 2014, 05, 158-167.	0.3	51
48	Effect of Row Spacing on Seed Isoflavone Contents in Soybean [Glycine max (L.) Merr.]. American Journal of Plant Sciences, 2014, 05, 4003-4010.	0.3	8
49	Quantitative Trait Loci (QTL) that Underlie SCN Resistance in Soybean [Glycine max (L.) Merr.] Pl438489B by â€~Hamilton' Re - combinant Inbred Line (RIL) Population. Atlas Journal of Plant Biology, 2014, 1, 29-38.	0.1	7
50	Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis for Visualization of Simple Sequence Repeats. Methods in Molecular Biology, 2013, 1006, 167-177.	0.4	2
51	A SNP-Based Genetic Linkage Map of Soybean Using the SoyS - NP6K Illumina Infinium BeadChip Genotyping Array. Journal of Plant Genome Sciences, 2013, 1, 80-89.	0.2	62
52	Additional Quantitative Trait Loci and Candidate Genes for Seed Isoflavone Content in Soybean. Journal of Agricultural Science, 2013, 5, .	0.1	10
53	Transcript Abundance Responses of Resistance Pathways of Arabidopsis thaliana to Deoxynivalenol. Atlas Journal of Biology, 2013, 2, 154-161.	0.1	1
54	Effect of Two Row Spaces on Several Agronomic Traits in Soybean [Glycine max (L.) Merr.] Atlas Journal of Plant Biology, 2013, 1, 18-23.	0.1	3

#	Article	IF	CITATIONS
55	Quantitative Trait Loci Associated with Moisture, Protein, and Oil Content in Soybean [Glycine max (L.) Merr.]. Journal of Agricultural Science, 2012, 4, .	0.1	10
56	A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492, 256-260.	13.7	332
57	Genetic Analysis of Yield Components in the PI 438489B by â€~Hamilton' Recombinant Inbred Line (RIL) Population of Soybean [Glycine max (L.) Merr.]. Journal of Agricultural Science, 2012, 4, .	0.1	5
58	Genetic Analysis of Root and Shoot Traits in the â€~Essex' By â€~Forrest' Recombinant Inbred Line (RIL) Population of Soybean [Glycine max (L.) Merr.]. Journal of Plant Genome Sciences, 2012, 1, 1-9.	0.2	27
59	The â€~PI 438489B' by â€~Hamilton' SNP-Based Genetic Linkage Map of Soybean [Glycine max (L.) Merr.] Identified Quantitative Trait Loci that Underlie Seedling SDS Resistance. Journal of Plant Genome Sciences, 2012, 1, 18-30.	0.2	28
60	Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Functional and Integrative Genomics, 2011, 11, 539-549.	1.4	40
61	Characterization of a plant-transformation-ready large-insert BIBAC library of <i>Arabidopsis</i> and bombardment transformation of a large-insert BIBAC of the library into tobacco. Genome, 2011, 54, 437-447.	0.9	13
62	Evaluation of Several Agronomic Traits in â€~Essex' By â€~Forrest' Recombinant Inbred Line Population of Soybean [Glycine max (L.) Merr.]. Atlas Journal of Plant Biology, 2011, 1, 13-17.	0.1	1
63	Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L 3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theoretical and Applied Genetics, 2008, 117, 1107-18.	1.8	44
64	In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme. BMC Genomics, 2008, 9, S6.	1.2	20
65	TILLING to detect induced mutations in soybean. BMC Plant Biology, 2008, 8, 9.	1.6	259
66	Construction and characterization of two bacterial artificial chromosome libraries of pea (<i>Pisum) Tj ETQq0 0 0</i>	rgBT /Ov	verlgçk 10 Tf :
67	Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. BMC Genomics, 2007, 8, 112.	1.2	38
68	Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Molecular Genetics and Genomics, 2006, 276, 503-516.	1.0	73
69	An updated â€~Essex' by â€~Forrest' linkage map and first composite interval map of QTL underlying six soybean traits. Theoretical and Applied Genetics, 2006, 113, 1015-1026.	1.8	106
70	The Soybean Genome Database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Research, 2006, 34, D758-D765.	6.5	96
71	Positional Cloning of Plant Developmental Genes. , 2005, , 233-256.		3
72	Integration of Physical and Genetic Maps. , 2005, , 215-232.		3

#	Article	IF	CITATIONS
73	A bacterial artificial chromosome based physical map of the <i>Ustilago maydis</i> genome. Genome, 2005, 48, 207-216.	0.9	12
74	Definition of Soybean Genomic Regions That Control Seed Phytoestrogen Amounts. Journal of Biomedicine and Biotechnology, 2004, 2004, 52-60.	3.0	67
75	A BAC- and BIBAC-Based Physical Map of the Soybean Genome. Genome Research, 2004, 14, 319-326.	2.4	111
76	Molecular cloning of the potatoGro1-4gene conferring resistance to pathotype Ro1 of the root cyst nematodeGlobodera rostochiensis, based on a candidate gene approach. Plant Journal, 2004, 38, 285-297.	2.8	211
77	Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of `Essex' x `Forrest'. Plant and Soil, 2004, 260, 197-204.	1.8	33
78	Construction of a HindIII Bacterial Artificial Chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theoretical and Applied Genetics, 2004, 108, 663-669.	1.8	53
79	Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theoretical and Applied Genetics, 2004, 109, 1041-1050.	1.8	57
80	Genetic and Physical Localization of the Soybean Rpg1-b Disease Resistance Gene Reveals a Complex Locus Containing Several Tightly Linked Families of NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2003, 16, 817-826.	1.4	77
81	Evaluating Physical Maps by Clone Location Comparisons. Journal of Genome Science and Technology, 2003, 2, 98-105.	0.7	8
82	Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarray analysis. Journal of Plant Physiology, 2002, 159, 1361-1374.	1.6	39
83	Quantitative trait loci in Two Soybean Recombinant Inbred Line Populations Segregating for Yield and Disease Resistance. Crop Science, 2002, 42, 271-277.	0.8	114
84	Quantitative Trait Loci Associated with Foliar Trigonelline Accumulation inGlycine MaxL. Journal of Biomedicine and Biotechnology, 2002, 2, 151-157.	3.0	19
85	Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theoretical and Applied Genetics, 2002, 104, 294-300.	1.8	98
86	The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant Journal, 2002, 30, 361-371.	2.8	381
87	A Bacterial Artificial Chromosome Library of Lotus japonicus Constructed in an Agrobacterium tumefaciens-Transformable Vector. Molecular Plant-Microbe Interactions, 2001, 14, 422-425.	1.4	26
88	Title is missing!. Molecular Breeding, 2001, 7, 63-71.	1.0	35
89	An Integrated Map of <i>Arabidopsis thaliana</i> for Functional Analysis of Its Genome Sequence. Genetics, 2001, 159, 1231-1242.	1.2	48
90	DNA Markers Associated with Loci Underlying Seed Phytoestrogen Content in Soybeans. Journal of Medicinal Food, 1999, 2, 185-187.	0.8	24

#	Article	IF	CITATIONS
91	A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular Genetics and Genomics, 1995, 249, 74-81.	2.4	198
92	TILLING: A Reverse Genetics and a Functional Genomics Tool in Soybean. , 0, , 251-265.		12
93	Influence of Drought Stress on Several Root Traits and their Correlation with Seed Protein and Oil Contents in Soybean. Atlas Journal of Biology, 0, , 267-273.	0.1	2
94	Genetic Analysis of Relative Water Content (RWC) in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.] Journal of Plant Genome Sciences, 0, , 46-53.	0.2	5
95	Characterization of Diversity of Bradyrhizobia on Cowpea in Iraq Reveals Unusual Strain Characteristics. Atlas Journal of Biology, 0, , 392-401.	0.1	0
96	Additional Polymorphisms Linked to Soybean Cyst Nematode Resistance At The Rhg4 Locus. Atlas Journal of Biology, 0, , 376-383.	0.1	0
97	Annotation of Cultivar Variations at the Multigeneic Rhg1/Rfs2 Locus:. Atlas Journal of Biology, 0, , 407-416.	0.1	0
98	Evaluation of Yield Performance of Soybean Mutant FM6-847 in North Carolina. Atlas Journal of Plant Biology, 0, , 96-105.	0.1	0
99	Influence of Drought Stress on Several Root Traits and their Correlation with Seed Protein and Oil Contents in Soybean. Atlas Journal of Biology, 0, , 267-273.	0.1	Ο