Chong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926683/publications.pdf Version: 2024-02-01

CHONCL

#	Article	IF	CITATIONS
1	Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution. Journal of Materials Science and Technology, 2022, 106, 19-27.	5.6	10
2	Microstructure-dependent coarsening behavior of γ′ precipitates in CoNi-based superalloys. Intermetallics, 2022, 140, 107396.	1.8	3
3	Modification Mechanism and Uniaxial Fatigue Performances of A356.2 Alloy Treated by Al-Sr-La Composite Refinement-Modification Agent. Acta Metallurgica Sinica (English Letters), 2022, 35, 901-914.	1.5	2
4	Hot deformation behaviour and microstructure evolution of Al-3%Mg2Si alloy. Materials Characterization, 2022, 183, 111623.	1.9	22
5	Short-term corrosion behavior of polycrystalline Ni3Al-based superalloy in sulfur-containing atmosphere. Intermetallics, 2022, 142, 107446.	1.8	4
6	The effect of solution temperature on the precipitates evolution and aging hardening response of Al-15%Mg2Si(-1%Cu) alloys. Journal of Materials Research and Technology, 2022, 17, 1330-1337.	2.6	7
7	Effect of Cr and W addition on the oxidation behavior of Ni–8%Al alloy at 1000°C. Vacuum, 2022, 200, 111044.	1.6	5
8	A new type-γâ€2∫γâ€2â€2 coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy. Journal of Materials Science and Technology, 2022, 119, 98-110.	5.6	15
9	Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al–9Si–0.4Mg–0.1Cu Alloy. Advanced Engineering Materials, 2022, 24, .	1.6	2
10	Precipitates evolution and tensile behavior of wrought Ni-based ATI 718Plus superalloy during long-term thermal exposure. Science China Technological Sciences, 2022, 65, 1283-1299.	2.0	6
11	Microstructure evolution and mechanical properties of a Fe, Cr-rich multiphase Ni3Al-based superalloy during transient liquid phase bonding process. Journal of Materials Research and Technology, 2022, 19, 2837-2847.	2.6	6
12	Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys. Journal of Materials Science and Technology, 2021, 67, 95-104.	5.6	104
13	Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys. Materials Characterization, 2021, 171, 110748.	1.9	8
14	Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141113.	2.6	16
15	Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 553-566.	2.4	19
16	The precipitation of $\hat{\mathbf{i}}$ phase during the solution treatments of Allvac 718Plus. Materials Characterization, 2021, 176, 111142.	1.9	13
17	The contribution of aluminides to strength of Al–Mg2Si–Cu–Ni alloys at room and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141381.	2.6	9
18	Effect of interlayer on microstructure and mechanical properties of diffusional-bonded Ni3Al-based superalloy/S31042 steel joint. Journal of Manufacturing Processes, 2021, 72, 252-261.	2.8	7

CHONG LI

#	Article	IF	CITATIONS
19	Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure. Vacuum, 2020, 171, 109038.	1.6	12
20	Effect of structural order on oxidation kinetics and oxide phase evolution of Al–Zr alloys. Corrosion Science, 2020, 165, 108407.	3.0	12
21	Enhancing tensile properties of wrought Ni-based superalloy ATI 718Plus at elevated temperature via morphology control of η phase. Materials Characterization, 2020, 169, 110547.	1.9	13
22	Creep behaviors of multiphase Ni3Al-based intermetallic alloy after 1000°C-1000Âh long-term aging at intermediate temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139701.	2.6	5
23	Effect of Cu addition on precipitation and age-hardening response of an Al-15%Mg2Si alloy. Materials Characterization, 2020, 169, 110611.	1.9	17
24	Characterization of γ′ precipitate and γ/γ′ interface in polycrystalline Ni3Al-based superalloys. Vacuum, 2020, 176, 109310.	1.6	13
25	Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1123-1132.	2.4	18
26	Microscopic Investigation of High-Temperature Oxidation of hcp-ZrAl2. Oxidation of Metals, 2020, 94, 431-445.	1.0	1
27	Strain-modulated Ni3Al alloy promotes oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 844, 156094.	2.8	21
28	Interactions between interstitial oxygen and substitutional niobium atoms in Ti–Nb–O BCC alloys: First-principles calculations. AIP Advances, 2020, 10, 025309.	0.6	4
29	Mechanical Performances of Al-Si-Mg Alloy with Dilute Sc and Sr Elements. Materials, 2020, 13, 665.	1.3	3
30	Effect of Ti addition on high-temperature oxidation behavior of Co–Ni-based superalloy. Journal of Iron and Steel Research International, 2020, 27, 1179-1189.	1.4	21
31	Corrosion behavior of Al-15%Mg2Si alloy with 1% Ni addition. Results in Physics, 2020, 17, 103129.	2.0	9
32	Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys. Journal of Materials Science and Technology, 2020, 52, 162-171.	5.6	15
33	The synthesis of composite powder precursors <i>via</i> chemical processes for the sintering of oxide dispersion-strengthened alloys. Materials Chemistry Frontiers, 2019, 3, 1952-1972.	3.2	32
34	Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138158.	2.6	15
35	Precipitation and growth behavior of γ′ phase in Ni3Al-based superalloy under thermal exposure. Journal of Materials Science, 2019, 54, 13368-13377.	1.7	15
36	Precipitation of intersected plate-like γ′ phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138439.	2.6	10

CHONG LI

#	Article	IF	CITATIONS
37	Effect of initial microstructure on the hot deformation behavior of a Ni3Al-based alloy. Intermetallics, 2019, 113, 106584.	1.8	16
38	Static coarsening behavior of a pre-deformed Ti2AlNb-based alloy during heat treatment. Vacuum, 2019, 169, 108934.	1.6	12
39	Microstructural evolution and constitutive models of 9CrMoCoB heat-resistant steel during high-temperature deformation. Journal of Iron and Steel Research International, 2019, 26, 1228-1239.	1.4	8
40	Precipitation Behavior of Spherical γ′ Phase in Eutectic Area of Ni 3 Alâ€Based Alloy. Advanced Engineering Materials, 2019, 21, 1801318.	1.6	5
41	Formation of multiply twinned martensite plates in rapidly solidified Ni3Al-based superalloys. Materials Letters, 2019, 250, 147-150.	1.3	9
42	Effect of deformation twinning on high-temperature performance of cold-rolled S31042 steel. Journal of Iron and Steel Research International, 2019, 26, 704-711.	1.4	2
43	Effect of dual aging treatments on phase transformation and microstructure in a pre-deformed Ti2AlNb-based alloy containing O + \hat{I}^2 /B2 structures. Vacuum, 2019, 164, 175-180.	1.6	16
44	Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy. Intermetallics, 2019, 109, 48-59.	1.8	24
45	Herringbone Structure and Significantly Enhanced Hardness in W-Modified Ti2AlNb Alloys by Spark Plasma Sintering. Metals and Materials International, 2019, 25, 1000-1007.	1.8	8
46	Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy. Journal of Alloys and Compounds, 2019, 771, 526-533.	2.8	86
47	Microstructure evolution and phase transformations in Ti-22Al-25Nb alloys tailored by super-transus solution treatment. Vacuum, 2019, 161, 209-219.	1.6	57
48	Microstructural Feature and Evolution of Rapidly Solidified Ni3Al-Based Superalloys. Acta Metallurgica Sinica (English Letters), 2019, 32, 764-770.	1.5	9
49	Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 623-635.	2.6	68
50	Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants. Scripta Materialia, 2019, 164, 66-70.	2.6	64
51	Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 453-458.	2.4	9
52	Microstructure evolution behavior of Ni3Al (γ′) phase in eutectic γ-γ′ of Ni3Al-based alloy. Intermetallics, 2018, 98, 28-33.	1.8	24
53	Hot tensile behavior of cold-rolled Inconel 718 alloy at 650â€ [−] °C: The role of δ phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 722, 136-146.	2.6	77
54	Precipitation and growth behavior of mushroom-like Ni3Al. Materials Letters, 2018, 211, 5-8.	1.3	18

CHONG LI

#	Article	IF	CITATIONS
55	Investigation on AIP as the heterogeneous nucleus of Mg2Si in Al–Mg2Si alloys by experimental observation and first-principles calculation. Results in Physics, 2018, 8, 146-152.	2.0	16
56	Intermetallic phase evolution and strengthening effect in Al–Mg2Si alloys with different Cu/Ni ratios. Materials Letters, 2018, 215, 254-258.	1.3	26
57	Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1191-1200.	2.4	11
58	Deformation Mechanism of L1 ₂ â€ <i>γ</i> ′ Phase in Bimodal <i>γ</i> ″â€ <i>γ</i> ′ Precipit Hardened Inconel 718 Superalloy. Advanced Engineering Materials, 2018, 20, 1800652.	ation 1.6	7
59	Precipitation behavior of WidmanstÃ t ten O phase associated with interface in aged Ti2AlNb-based alloys. Materials Characterization, 2018, 145, 413-422.	1.9	28
60	Effects of morphology of Mg powder precursor on phase formation and superconducting properties of Mg ¹¹ B ₂ low activation superconductor. Journal of Materials Chemistry C, 2018, 6, 8069-8075.	2.7	5
61	Effects of Ti addition on microstructure and mechanical property of spark-plasma-sintered transformable 9Cr-ODS steels. Fusion Engineering and Design, 2018, 135, 88-94.	1.0	16
62	Mechanism for the formation of Z-phase in 25Cr-20Ni-Nb-N austenitic stainless steel. Materials Letters, 2018, 233, 16-19.	1.3	26
63	Effects of quenching-partitioning-tempering treatment on microstructure and mechanical performance of Nb-V-Ti microalloyed ultra-high strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 283-293.	2.6	37
64	Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment. Journal of Alloys and Compounds, 2017, 716, 65-72.	2.8	84
65	Deformation behavior and processing maps of Ni 3 Al-based superalloy during isothermal hot compression. Journal of Alloys and Compounds, 2017, 712, 687-695.	2.8	90
66	Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 215-226.	2.6	101
67	Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization. Materials Characterization, 2017, 133, 138-145.	1.9	35
68	Hot deformation behavior and microstructural evolution of Nb–V–Ti microalloyed ultra-high strength steel. Journal of Materials Research, 2017, 32, 3777-3787.	1.2	13
69	Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-V-Ti microalloyed ultra-high strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 249-256.	2.6	23
70	Microstructural Characterization and Phase Separation Sequences During Solidification of Ni3Al-Based Superalloy. Acta Metallurgica Sinica (English Letters), 2017, 30, 949-956.	1.5	23
71	Correlation between Zn-Rich Phase and Corrosion/Oxidation Behavior of Sn–8Zn–3Bi Alloy. Metals, 2016, 6, 175.	1.0	2
72	Effects of cold rolling on the precipitation and the morphology of δ-phase in Inconel 718 alloy. Journal of Materials Research, 2016, 31, 443-454.	1.2	14

Chong Li

#	Article	IF	CITATIONS
73	Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 515-521.	2.6	71
74	Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1087-1096.	2.4	22
75	Microstructure and corrosion behavior of Al–10%Mg 2 Si cast alloy after heat treatment. Materials Characterization, 2016, 122, 142-147.	1.9	45
76	Acicular ferrite formation during isothermal holding in HSLA steel. Journal of Materials Science, 2016, 51, 3555-3563.	1.7	20
77	Effect of heat treatment on microstructure and mechanical property of Al–10%Mg2Si alloy. Journal of Alloys and Compounds, 2016, 663, 16-19.	2.8	44
78	Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. Journal of Materials Research, 2015, 30, 2090-2100.	1.2	18
79	Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging. Journal of Materials Research, 2015, 30, 3642-3652.	1.2	22
80	Corrosion behavior of Al–Mg2Si alloys with/without addition of Al–P master alloy. Materials Characterization, 2015, 110, 170-174.	1.9	48
81	Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5Âwt% NaCl solution. Journal of Materials Science: Materials in Electronics, 2015, 26, 11-22.	1.1	30
82	Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy. Journal of Alloys and Compounds, 2015, 649, 949-960.	2.8	104
83	Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 604-612.	2.4	43
84	Thermodynamic evaluation of Al–Mg2Si with addition of Ni. Materials Letters, 2012, 68, 255-257.	1.3	12
85	Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 573-577.	2.6	53
86	Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys. Journal of Alloys and Compounds, 2008, 465, 145-150.	2.8	93