Francis J Mcmahon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6926378/francis-j-mcmahon-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,539 249 75 143 h-index g-index citations papers 282 25,287 6.72 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
249	Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach <i>British Journal of Psychiatry</i> , 2022 , 1-10	5.4	1
248	Putting Genetics to Work in the Psychiatric Clinic American Journal of Psychiatry, 2022, 179, 182-188	11.9	O
247	Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. <i>Molecular Psychiatry</i> , 2021 , 26, 2457-2470	15.1	17
246	Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. <i>Molecular Psychiatry</i> , 2021 , 26, 4179-4190	15.1	8
245	Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients. <i>Translational Psychiatry</i> , 2021 , 11, 606	8.6	1
244	Review and Consensus on Pharmacogenomic Testing in Psychiatry. <i>Pharmacopsychiatry</i> , 2021 , 54, 5-17	2	40
243	Genetic versus stress and mood determinants of sleep in the Amish. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2021 , 186, 113-121	3.5	1
242	Multiple dimensions of stress vs. genetic effects on depression. <i>Translational Psychiatry</i> , 2021 , 11, 254	8.6	О
241	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. <i>Nature Genetics</i> , 2021 , 53, 817-829	36.3	83
240	Gene-Based Association Testing of Dichotomous Traits With Generalized Functional Linear Mixed Models Using Extended Pedigrees: Applications to Age-Related Macular Degeneration. <i>Journal of the American Statistical Association</i> , 2021 , 116, 531-545	2.8	1
239	Exemplar scoring identifies genetically separable phenotypes of lithium responsive bipolar disorder. <i>Translational Psychiatry</i> , 2021 , 11, 36	8.6	5
238	Prediction of lithium response using genomic data. Scientific Reports, 2021, 11, 1155	4.9	1
237	Deep transcriptome sequencing of subgenual anterior cingulate cortex reveals cross-diagnostic and diagnosis-specific RNA expression changes in major psychiatric disorders. Neuropsychopharmacology, 2021, 46, 1364-1372	8.7	4
236	Characterisation of age and polarity at onset in bipolar disorder <i>British Journal of Psychiatry</i> , 2021 , 219, 659-669	5.4	2
235	Genetic Overlap Profiles of Cognitive Ability in Psychotic and Affective Illnesses: A Multisite Study of Multiplex Pedigrees. <i>Biological Psychiatry</i> , 2021 , 90, 373-384	7.9	1
234	HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders. <i>Scientific Reports</i> , 2021 , 11, 17823	4.9	1
233	Validity of the Mood Disorder Questionnaire (MDQ) as a screening tool for bipolar spectrum disorders in anabaptist populations. <i>Journal of Psychiatric Research</i> , 2020 , 123, 159-163	5.2	O

232	The genetics of bipolar disorder. <i>Molecular Psychiatry</i> , 2020 , 25, 544-559	15.1	66
231	Polygenic risk for anxiety influences anxiety comorbidity and suicidal behavior in bipolar disorder. <i>Translational Psychiatry</i> , 2020 , 10, 298	8.6	7
230	Clinical and genetic validity of quantitative bipolarity. <i>Translational Psychiatry</i> , 2019 , 9, 228	8.6	1
229	From genetics to biology: advancing mental health research in the Genomics ERA. <i>Molecular Psychiatry</i> , 2019 , 24, 1576-1582	15.1	4
228	Genome-wide association study identifies 30 loci associated with bipolar disorder. <i>Nature Genetics</i> , 2019 , 51, 793-803	36.3	662
227	Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study. <i>Bipolar Disorders</i> , 2019 , 21, 68-75	3.8	15
226	Rediscovering the value of families for psychiatric genetics research. <i>Molecular Psychiatry</i> , 2019 , 24, 52	3-535	30
225	Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. <i>Molecular Psychiatry</i> , 2019 , 24, 613-624	15.1	16
224	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. <i>Cell</i> , 2019 , 179, 1469-1482.e11	56.2	402
223	Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. <i>European Neuropsychopharmacology</i> , 2019 , 29, 156-170	1.2	5
222	Linear mixed models for association analysis of quantitative traits with next-generation sequencing data. <i>Genetic Epidemiology</i> , 2019 , 43, 189-206	2.6	3
221	Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder. <i>Gene</i> , 2018 , 645, 119-123	3.8	20
220	Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder. <i>Frontiers in Psychiatry</i> , 2018 , 9, 207	5	15
219	Evaluation of Recipients of Positive and Negative Secondary Findings Evaluations in a Hybrid CLIA-Research Sequencing Pilot. <i>American Journal of Human Genetics</i> , 2018 , 103, 358-366	11	24
218	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. <i>Cell</i> , 2018 , 173, 1705-1715.e16	56.2	360
217	Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder: A Genome-Wide Association Study. <i>JAMA Psychiatry</i> , 2018 , 75, 65-74	14.5	75
216	Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics. <i>International Journal of Bipolar Disorders</i> , 2018 , 6, 24	5.4	4
215	Exploratory genome-wide association analysis of response to ketamine and a polygenic analysis of response to scopolamine in depression. <i>Translational Psychiatry</i> , 2018 , 8, 280	8.6	18

214	Genetic pleiotropy between mood disorders, metabolic, and endocrine traits in a multigenerational pedigree. <i>Translational Psychiatry</i> , 2018 , 8, 218	8.6	11
213	Convergent analysis of genome-wide genotyping and transcriptomic data suggests association of zinc finger genes with lithium response in bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2018 , 177, 658-664	3.5	6
212	Novel genetic loci associated with hippocampal volume. <i>Nature Communications</i> , 2017 , 8, 13624	17.4	173
211	The antidepressant efficacy of subanesthetic-dose ketamine does not correlate with baseline subcortical volumes in a replication sample with major depressive disorder. <i>Journal of Psychopharmacology</i> , 2017 , 31, 1570-1577	4.6	10
210	A population-specific reference panel empowers genetic studies of Anabaptist populations. <i>Scientific Reports</i> , 2017 , 7, 6079	4.9	10
209	A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region. <i>Journal of Affective Disorders</i> , 2016 , 189, 141-9	6.6	36
208	An Integrative Genomic Study Implicates the Postsynaptic Density in the Pathogenesis of Bipolar Disorder. <i>Neuropsychopharmacology</i> , 2016 , 41, 886-95	8.7	25
207	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. <i>Biological Psychiatry</i> , 2016 , 80, 84-86	7.9	2
206	Symptom profiles and illness course among Anabaptist and Non-Anabaptist adults with major mood disorders. <i>International Journal of Bipolar Disorders</i> , 2016 , 4, 21	5.4	3
205	Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. <i>Human Molecular Genetics</i> , 2016 , 25, 3383-3394	5.6	125
204	Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. <i>Lancet, The</i> , 2016 , 387, 1085-1093	40	216
203	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. <i>Nature Neuroscience</i> , 2016 , 19, 420-431	25.5	163
202	Genetic association studies in psychiatry: time for pay-off. Lancet Psychiatry, the, 2016, 3, 309-10	23.3	1
201	Risk factors for suicide in bipolar I disorder in two prospectively studied cohorts. <i>Journal of Affective Disorders</i> , 2016 , 190, 1-5	6.6	14
200	Finding Rare, Disease-Associated Variants in Isolated Groups: Potential Advantages of Mennonite Populations. <i>Human Biology</i> , 2016 , 88, 109-120	1.2	3
199	The Genetic Basis of Bipolar Disorder. <i>Milestones in Drug Therapy</i> , 2016 , 73-92		
198	Circadian genes and lithium response in bipolar disorders: associations with PPARGC1A (PGC-1) and RORA. <i>Genes, Brain and Behavior</i> , 2016 , 15, 660-8	3.6	28
197	Novel genetic loci underlying human intracranial volume identified through genome-wide association. <i>Nature Neuroscience</i> , 2016 , 19, 1569-1582	25.5	147

(2014-2016)

196	Neurocognitive functioning in euthymic patients with bipolar disorder and unaffected relatives: A review of the literature. <i>Neuroscience and Biobehavioral Reviews</i> , 2016 , 69, 193-215	9	41
195	Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. <i>Nature Neuroscience</i> , 2015 , 18, 199-209	25.5	572
194	Common genetic variants influence human subcortical brain structures. <i>Nature</i> , 2015 , 520, 224-9	50.4	601
193	Rare variants in neuronal excitability genes influence risk for bipolar disorder. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3576-81	11.5	112
192	Clinically Useful Genetic Markers of Antidepressant Response: How Do We Get There From Here?. <i>American Journal of Psychiatry</i> , 2015 , 172, 697-9	11.9	6
191	A Novel Mixture Model to Estimate the Time to Drug Effect Onset and Its Association with Covariates. <i>Human Heredity</i> , 2015 , 80, 90-9	1.1	
190	Test-retest reliability of a new questionnaire for the retrospective assessment of long-term lithium use in bipolar disorder. <i>Journal of Affective Disorders</i> , 2015 , 174, 589-93	6.6	5
189	Genome wide association study identifies variants in NBEA associated with migraine in bipolar disorder. <i>Journal of Affective Disorders</i> , 2015 , 172, 453-61	6.6	12
188	Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. <i>American Journal of Human Genetics</i> , 2015 , 96, 283-94	11	161
187	Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry, 2014, 71, 657-64	14.5	172
186	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. <i>Brain Imaging and Behavior</i> , 2014 , 8, 153-82	4.1	539
185	RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. <i>Molecular Psychiatry</i> , 2014 , 19, 1179-85	15.1	81
184	The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder: an explorative study. <i>BioData Mining</i> , 2014 , 7, 19	4.3	6
183	Variant GADL1 and response to lithium in bipolar I disorder. <i>New England Journal of Medicine</i> , 2014 , 370, 1857-9	59.2	31
182	Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. <i>World Journal of Biological Psychiatry</i> , 2014 , 15, 200-8	3.8	82
181	Corpus callosum size is highly heritable in humans, and may reflect distinct genetic influences on ventral and rostral regions. <i>PLoS ONE</i> , 2014 , 9, e99980	3.7	9
180	Do participants in genome sequencing studies of psychiatric disorders wish to be informed of their results? A survey study. <i>PLoS ONE</i> , 2014 , 9, e101111	3.7	28
179	Common and rare variant analysis in early-onset bipolar disorder vulnerability. <i>PLoS ONE</i> , 2014 , 9, e104	3 3.6	32

178	Prediction of treatment outcomes in psychiatrywhere do we stand?. <i>Dialogues in Clinical Neuroscience</i> , 2014 , 16, 455-64	5.7	32
177	Association study of 83 candidate genes for bipolar disorder in chromosome 6q selected using an evidence-based prioritization algorithm. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2013, 162B, 898-906	3.5	9
176	Race, genetic ancestry and response to antidepressant treatment for major depression. Neuropsychopharmacology, 2013 , 38, 2598-606	8.7	27
175	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. <i>Nature Genetics</i> , 2013 , 45, 984-94	36.3	1628
174	Two gene co-expression modules differentiate psychotics and controls. <i>Molecular Psychiatry</i> , 2013 , 18, 1308-14	15.1	107
173	Retention and attrition among African Americans in the STAR*D study: what causes research volunteers to stay or stray?. <i>Depression and Anxiety</i> , 2013 , 30, 1137-44	8.4	13
172	Amish revisited: next-generation sequencing studies of psychiatric disorders among the Plain people. <i>Trends in Genetics</i> , 2013 , 29, 412-8	8.5	17
171	Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. <i>Molecular Psychiatry</i> , 2013 , 18, 340-6	15.1	134
170	Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. <i>Molecular Psychiatry</i> , 2013 , 18, 195-205	15.1	155
169	In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. <i>Brain</i> , 2013 , 136, 2228-38	11.2	232
168	A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2013 , 33, 53-8	7.3	175
167	Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. <i>Journal of Immunotherapy</i> , 2013 , 36, 133-51	5	758
166	Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. <i>American Journal of Psychiatry</i> , 2013 , 170, 207-17	11.9	181
165	Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette's disorder. <i>Movement Disorders</i> , 2013 , 28, 1263-70	7	38
164	Genome-wide association study of irritable vs. elated mania suggests genetic differences between clinical subtypes of bipolar disorder. <i>PLoS ONE</i> , 2013 , 8, e53804	3.7	16
163	Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. <i>PLoS ONE</i> , 2013 , 8, e65636	3.7	113
162	Pharmacogenetics of antidepressants, mood stabilizers, and antipsychotics in diverse human populations. <i>Discovery Medicine</i> , 2013 , 16, 113-22	2.5	16
161	Association study of serotonin pathway genes in attempted suicide. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2012 , 159B, 112-9	3.5	15

(2011-2012)

160	Evidence for association of bipolar disorder to haplotypes in the 22q12.3 region near the genes stargazin, IFT27 and parvalbumin. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2012 , 159B, 941-50	3.5	10
159	Identification of common variants associated with human hippocampal and intracranial volumes. <i>Nature Genetics</i> , 2012 , 44, 552-61	36.3	498
158	Pharmacogenomics and personalized medicine in neuropsychiatry. <i>Neuron</i> , 2012 , 74, 773-6	13.9	55
157	Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. <i>Pharmacogenomics Journal</i> , 2012 , 12, 328-41	3.5	31
156	Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. <i>Biological Psychiatry</i> , 2012 , 72, e27-8	7.9	150
155	A genome-wide association study of attempted suicide. <i>Molecular Psychiatry</i> , 2012 , 17, 433-44	15.1	117
154	Genome-wide significant association between a 'negative mood delusions' dimension in bipolar disorder and genetic variation on chromosome 3q26.1. <i>Translational Psychiatry</i> , 2012 , 2, e165	8.6	12
153	Common genetic variation in the indoleamine-2,3-dioxygenase genes and antidepressant treatment outcome in major depressive disorder. <i>Journal of Psychopharmacology</i> , 2012 , 26, 360-7	4.6	32
152	Replication and meta-analysis of TMEM132D gene variants in panic disorder. <i>Translational Psychiatry</i> , 2012 , 2, e156	8.6	62
151	Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms. <i>Molecular Psychiatry</i> , 2012 , 17, 818-26	15.1	24
150	Gene expression and genetic variation data implicate PCLO in bipolar disorder. <i>Biological Psychiatry</i> , 2011 , 69, 353-9	7.9	46
149	The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. <i>Biological Psychiatry</i> , 2011 , 69, 344-52	7.9	56
148	The genetics of panic disorder. <i>Journal of Medical Genetics</i> , 2011 , 48, 361-8	5.8	38
147	Genome-wide association studies of antidepressant outcome: a brief review. <i>Progress in Neuro-Psychopharmacology and Biological Psychiatry</i> , 2011 , 35, 1553-7	5.5	38
146	High frequencies of de novo CNVs in bipolar disorder and schizophrenia. <i>Neuron</i> , 2011 , 72, 951-63	13.9	240
145	A network-based approach to prioritize results from genome-wide association studies. <i>PLoS ONE</i> , 2011 , 6, e24220	3.7	57
144	Genetic association of bipolar disorder with the (B) nicotinic receptor subunit gene. <i>Psychiatric Genetics</i> , 2011 , 21, 77-84	2.9	8
143	Reply to R eplication of association of 3p21.1 with susceptibility to bipolar disorder but not major depression <i>Nature Genetics</i> , 2011 , 43, 5-5	36.3	6

142	Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder. <i>Molecular Psychiatry</i> , 2011 , 16, 407-18	15.1	46
141	A functional alternative splicing mutation in human tryptophan hydroxylase-2. <i>Molecular Psychiatry</i> , 2011 , 16, 1169-76	15.1	19
140	A non-synonymous polymorphism in galactose mutarotase (GALM) is associated with serotonin transporter binding potential in the human thalamus: results of a genome-wide association study. <i>Molecular Psychiatry</i> , 2011 , 16, 584-5	15.1	18
139	Identity-by-descent filtering as a tool for the identification of disease alleles in exome sequence data from distant relatives. <i>BMC Proceedings</i> , 2011 , 5 Suppl 9, S76	2.3	6
138	Genome-wide association analysis of age at onset and psychotic symptoms in bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 370-8	3.5	39
137	Genetics of bipolar disorder. Current Topics in Behavioral Neurosciences, 2011, 5, 19-30	3.4	1
136	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. <i>Nature Genetics</i> , 2011 , 43, 977-83	36.3	1094
135	Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes. <i>PLoS Genetics</i> , 2011 , 7, e1002134	6	53
134	Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. <i>Nature Genetics</i> , 2010 , 42, 128-31	36.3	135
133	The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment. <i>Neuropsychobiology</i> , 2010 , 62, 72-8	4	109
132	Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. <i>International Journal of Neuropsychopharmacology</i> , 2010 , 13, 93-101	5.8	87
131	Genome-wide association study of suicide attempts in mood disorder patients. <i>American Journal of Psychiatry</i> , 2010 , 167, 1499-507	11.9	113
130	Pioneering first steps and cautious conclusions. <i>Biological Psychiatry</i> , 2010 , 67, 99-100	7.9	5
129	A Genome-Wide Association Study of Amygdala Activation in Youths With and Without Bipolar Disorder. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2010 , 49, 33-41	7.2	25
128	Genetic variation in HTR2A influences serotonin transporter binding potential as measured using PET and [11C]DASB. <i>International Journal of Neuropsychopharmacology</i> , 2010 , 13, 715-24	5.8	28
127	Increased gene expression of diacylglycerol kinase lin bipolar disorder. <i>International Journal of Neuropsychopharmacology</i> , 2010 , 13, 1127-8	5.8	35
126	A genome-wide association study of amygdala activation in youths with and without bipolar disorder. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2010 , 49, 33-41	7.2	9
125	Sex-specific association of the Reelin gene with bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 549-553	3.5	48

(2009-2010)

124	Case-control association study of TGOLN2 in attempted suicide. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1016-23	3.5	3
123	Coming to grips with complex disorders: genetic risk prediction in bipolar disorder using panels of genes identified through convergent functional genomics. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 850-77	3.5	41
122	An investigation of candidate regions for association with bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1292-7	3.5	6
121	Genome-wide linkage and follow-up association study of postpartum mood symptoms. <i>American Journal of Psychiatry</i> , 2009 , 166, 1229-37	11.9	68
120	Pharmacogenetics Studies in STAR*D: Strengths, Limitations, and Results. <i>Psychiatric Services</i> , 2009 , 60, 1446-1457	3.3	58
119	Genetic and clinical predictors of sexual dysfunction in citalopram-treated depressed patients. <i>Neuropsychopharmacology</i> , 2009 , 34, 1819-28	8.7	78
118	The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. <i>Human Molecular Genetics</i> , 2009 , 18, 2719-27	5.6	71
117	Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 155-81	3.5	152
116	Family-based association study of Neuregulin 1 with psychotic bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 693-702	3.5	29
115	Convergent genome wide association results for bipolar disorder and substance dependence. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 182-90	3.5	42
114	Common and rare variants of DAOA in bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 960-6	3.5	10
113	Family-based association of YWHAH in psychotic bipolar disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 977-83	3.5	41
112	Premenstrual mood symptoms: study of familiality and personality correlates in mood disorder pedigrees. <i>Archives of Womenm Mental Health</i> , 2009 , 12, 27-34	5	10
111	Family-based association of FKBP5 in bipolar disorder. <i>Molecular Psychiatry</i> , 2009 , 14, 261-8	15.1	126
110	Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. <i>Molecular Psychiatry</i> , 2009 , 14, 487-91	15.1	147
109	Singleton deletions throughout the genome increase risk of bipolar disorder. <i>Molecular Psychiatry</i> , 2009 , 14, 376-80	15.1	121
108	Genome-wide association study of bipolar disorder in European American and African American individuals. <i>Molecular Psychiatry</i> , 2009 , 14, 755-63	15.1	287
107	Microduplications of 16p11.2 are associated with schizophrenia. <i>Nature Genetics</i> , 2009 , 41, 1223-7	36.3	550

106	Bcl-2 polymorphism influences gray matter volume in the ventral striatum in healthy humans. <i>Biological Psychiatry</i> , 2009 , 66, 804-7	7.9	23
105	SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. <i>Psychiatric Genetics</i> , 2009 , 19, 281-91	2.9	53
104	Genome-wide association study of suicidal ideation emerging during citalopram treatment of depressed outpatients. <i>Pharmacogenetics and Genomics</i> , 2009 , 19, 666-74	1.9	80
103	Pharmacogenetics studies in STAR*D: strengths, limitations, and results. <i>Psychiatric Services</i> , 2009 , 60, 1446-57	3.3	41
102	The genetic basis of bipolar disorder 2009 , 59-76		2
101	Association study of phosphodiesterase genes in the Sequenced Treatment Alternatives to Relieve Depression sample. <i>Pharmacogenetics and Genomics</i> , 2009 , 19, 235-8	1.9	22
100	Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. <i>Molecular Psychiatry</i> , 2008 , 13, 466-7	15.1	91
99	A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. <i>Molecular Psychiatry</i> , 2008 , 13, 197-207	15.1	548
98	Familial aggregation of postpartum mood symptoms in bipolar disorder pedigrees. <i>Bipolar Disorders</i> , 2008 , 10, 38-44	3.8	42
97	The FKBP5-gene in depression and treatment responsean association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. <i>Biological Psychiatry</i> , 2008 , 63, 1103-10	₎ 7.9	218
96	It is time to take a stand for medical research and against terrorism targeting medical scientists. <i>Biological Psychiatry</i> , 2008 , 63, 725-7	7.9	7
95	Pharmacogenetics of major depression: insights from level 1 of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial. <i>Molecular Diagnosis and Therapy</i> , 2008 , 12, 321-30	4.5	17
94	Association study of Wnt signaling pathway genes in bipolar disorder. <i>Archives of General Psychiatry</i> , 2008 , 65, 785-93		58
93	Dr. McMahon Replies. American Journal of Psychiatry, 2008, 165, 395-396	11.9	
92	Genetic Markers of Suicidal Ideation Emerging During Citalopram Treatment of Major Depression. <i>Focus (American Psychiatric Publishing)</i> , 2008 , 6, 69-79	1.1	
91	Evidence of association between brain-derived neurotrophic factor gene and bipolar disorder. <i>Psychiatric Genetics</i> , 2008 , 18, 267-74	2.9	47
90	SERT Ileu425Val in autism, Asperger syndrome and obsessive-compulsive disorder. <i>Psychiatric Genetics</i> , 2008 , 18, 31-9	2.9	36
89	Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20. <i>Psychiatric Genetics</i> , 2008 , 18, 191-8	2.9	12

(2006-2008)

88	Gene-based SNP mapping of a psychotic bipolar affective disorder linkage region on 22q12.3: association with HMG2L1 and TOM1. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 59-67	3.5	15
87	Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 1047-55	3.5	159
86	Neurotransmission and bipolar disorder: a systematic family-based association study. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 1270-7	3.5	22
85	Nested association between genetic variation in tryptophan hydroxylase II, bipolar affective disorder, and suicide attempts. <i>Biological Psychiatry</i> , 2007 , 61, 181-6	7.9	75
84	Attempted suicide in bipolar disorder pedigrees: evidence for linkage to 2p12. <i>Biological Psychiatry</i> , 2007 , 61, 725-7	7.9	37
83	The pharmacogenetics of major depression: past, present, and future. <i>Biological Psychiatry</i> , 2007 , 62, 1205-7	7.9	21
82	Genome-wide linkage scan of 98 bipolar pedigrees and analysis of clinical covariates. <i>Molecular Psychiatry</i> , 2007 , 12, 630-9	15.1	33
81	Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. <i>American Journal of Psychiatry</i> , 2007 , 164, 1530-8	11.9	171
80	Mood-incongruent psychotic features in bipolar disorder: familial aggregation and suggestive linkage to 2p11-q14 and 13q21-33. <i>American Journal of Psychiatry</i> , 2007 , 164, 236-47	11.9	75
79	Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. <i>American Journal of Psychiatry</i> , 2007 , 164, 1181-8	11.9	169
78	The bipolar disorder phenome database: a resource for genetic studies. <i>American Journal of Psychiatry</i> , 2007 , 164, 1229-37	11.9	66
77	Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. <i>Archives of General Psychiatry</i> , 2007 , 64, 783-92		182
76	Parental diagnoses in youth with narrow phenotype bipolar disorder or severe mood dysregulation. <i>American Journal of Psychiatry</i> , 2007 , 164, 1238-41	11.9	124
75	Using duplicate genotyped data in genetic analyses: testing association and estimating error rates. <i>Statistical Applications in Genetics and Molecular Biology</i> , 2007 , 6, Article4	1.2	20
74	Sequence variation in DOCK9 and heterogeneity in bipolar disorder. <i>Psychiatric Genetics</i> , 2007 , 17, 274-	8£ .9	25
73	A success at the end of an era, and a glimpse of things to come. <i>American Journal of Psychiatry</i> , 2007 , 164, 999-1001	11.9	O
72	A tree-based model for allele-sharing-based linkage analysis in human complex diseases. <i>Genetic Epidemiology</i> , 2006 , 30, 155-69	2.6	6
71	What is familial about familial bipolar disorder? Resemblance among relatives across a broad spectrum of phenotypic characteristics. <i>Archives of General Psychiatry</i> , 2006 , 63, 1368-76		88

70	Familiality of polarity at illness onset in bipolar affective disorder. <i>American Journal of Psychiatry</i> , 2006 , 163, 1754-9	11.9	43
69	Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. <i>American Journal of Human Genetics</i> , 2006 , 78, 804-814	11	396
68	G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. <i>Biological Psychiatry</i> , 2006 , 60, 106-14	7.9	226
67	Genotype-phenotype studies in bipolar disorder showing association between the DAOA/G30 locus and persecutory delusions: a first step toward a molecular genetic classification of psychiatric phenotypes. <i>American Journal of Psychiatry</i> , 2005 , 162, 2101-8	11.9	116
66	Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. <i>American Journal of Human Genetics</i> , 2005 , 77, 582-95	11	192
65	Response to Zhang et al. (2005): loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. <i>Neuron</i> , 2005 , 48, 702-3; author reply 705-6	13.9	25
64	Rapid mood switching and suicidality in familial bipolar disorder. <i>Bipolar Disorders</i> , 2005 , 7, 441-8	3.8	51
63	Evidence of association between bipolar disorder and Citron on chromosome 12q24. <i>Molecular Psychiatry</i> , 2005 , 10, 807-9	15.1	30
62	Bipolar disorder as a phenotype in genetic studies. Clinical Neuroscience Research, 2005, 5, 37-43		1
61	A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample. <i>Archives of Neurology</i> , 2005 , 62, 74-8		41
60	Familial variation in episode frequency in bipolar affective disorder. <i>American Journal of Psychiatry</i> , 2005 , 162, 1266-72	11.9	55
59	Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. <i>Human Heredity</i> , 2004 , 58, 131-8	1.1	117
58	Genetic association studies in mood disorders: issues and promise. <i>International Review of Psychiatry</i> , 2004 , 16, 301-10	3.6	31
57	Frequency Finder: a multi-source web application for collection of public allele frequencies of SNP markers. <i>Bioinformatics</i> , 2004 , 20, 439-43	7.2	6
56	Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. <i>Nature Genetics</i> , 2004 , 36, 783-4; author reply 784-5	36.3	54
55	Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. <i>Molecular Psychiatry</i> , 2004 , 9, 87-92; image 5	15.1	114
54	Neither single-marker nor haplotype analyses support an association between genetic variation near NOTCH4 and bipolar disorder. <i>American Journal of Medical Genetics Part A</i> , 2004 , 131B, 10-5		3
53	Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. <i>Human Molecular Genetics</i> , 2004 , 13, 335-42	5.6	33

(2001-2004)

52	Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. <i>Biological Psychiatry</i> , 2004 , 56, 18-3	23 ^{7.9}	59
51	Suggestive linkage to chromosomal regions 13q31 and 22q12 in families with psychotic bipolar disorder. <i>American Journal of Psychiatry</i> , 2003 , 160, 680-6	11.9	153
50	Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X. <i>American Journal of Medical Genetics Part A</i> , 2003 , 119B, 69-76		33
49	Familial aggregation of psychotic symptoms in a replication set of 69 bipolar disorder pedigrees. <i>American Journal of Medical Genetics Part A</i> , 2003 , 116B, 90-7		51
48	Genome scan of the fifty-six bipolar pedigrees from the NIMH genetics initiative replication sample: chromosomes 4, 7, 9, 18, 19, 20, and 21. <i>American Journal of Medical Genetics Part A</i> , 2003 , 121B, 21-7		32
47	Genetic linkage and association studies in bipolar affective disorder: a time for optimism. <i>American Journal of Medical Genetics Part A</i> , 2003 , 123C, 36-47		24
46	Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. <i>Molecular Psychiatry</i> , 2003 , 8, 288-98	15.1	127
45	Trapping and sequence analysis of 1138 putative exons from human chromosome 18. <i>Molecular Psychiatry</i> , 2003 , 8, 619-23	15.1	1
44	Inconsistent designs of association studies: a missed opportunity. <i>Molecular Psychiatry</i> , 2003 , 8, 770-2	15.1	11
43	Genome-wide scan and conditional analysis in bipolar disorder: evidence for genomic interaction in the National Institute of Mental Health genetics initiative bipolar pedigrees. <i>Biological Psychiatry</i> , 2003 , 54, 1265-73	7.9	78
42	Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. <i>Biological Psychiatry</i> , 2003 , 53, 239-43	7.9	28
41	Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. <i>American Journal of Human Genetics</i> , 2003 , 73, 49-62	11	353
40	Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. <i>American Journal of Human Genetics</i> , 2003 , 73, 107-14	11	186
39	Genetic association mapping at the crossroads: which test and why? Overview and practical guidelines. <i>American Journal of Medical Genetics Part A</i> , 2002 , 114, 1-11		90
38	Apparent replication of suggestive linkage on chromosome 16 in the NIMH genetics initiative bipolar pedigrees. <i>American Journal of Medical Genetics Part A</i> , 2002 , 114, 407-12		32
37	Can long-range microsatellite data be used to predict short-range linkage disequilibrium?. <i>Human Molecular Genetics</i> , 2002 , 11, 1363-72	5.6	20
36	Diagnostic reliability of bipolar II disorder. Archives of General Psychiatry, 2002, 59, 736-40		126
35	NEDD4L on human chromosome 18q21 has multiple forms of transcripts and is a homologue of the mouse Nedd4-2 gene. <i>European Journal of Human Genetics</i> , 2001 , 9, 922-30	5.3	46

34	The current status and prospects for genetic studies of bipolar disorder. <i>Clinical Neuroscience Research</i> , 2001 , 1, 153-157		1
33	Attempted suicide and alcoholism in bipolar disorder: clinical and familial relationships. <i>American Journal of Psychiatry</i> , 2000 , 157, 2048-50	11.9	75
32	Mitochondrial DNA sequence diversity in bipolar affective disorder. <i>American Journal of Psychiatry</i> , 2000 , 157, 1058-64	11.9	66
31	Suggestive evidence of a locus on chromosome 10p using the NIMH genetics initiative bipolar affective disorder pedigrees 2000 , 96, 18-23		58
30	Full-genome scan for linkage in 50 families segregating the bipolar affective disease phenotype. <i>American Journal of Human Genetics</i> , 2000 , 66, 205-15	11	72
29	Anticipation in schizophrenia: a review and reconsideration. <i>American Journal of Medical Genetics</i> Part A, 1999 , 88, 686-93		19
28	Integrating clinical and laboratory data in genetic studies of complex phenotypes: A network-based data management system 1998 , 81, 248-256		5
27	Affective Disorders 1998 , 995-1003		1
26	Bipolar disorder and panic disorder in families: an analysis of chromosome 18 data. <i>American Journal of Psychiatry</i> , 1998 , 155, 829-31	11.9	51
25	A novel, heritable, expanding CTG repeat in an intron of the SEF2-1 gene on chromosome 18q21.1. <i>Human Molecular Genetics</i> , 1997 , 6, 1855-63	5.6	80
24	Linkage of bipolar affective disorder to chromosome 18 markers in a new pedigree series. <i>American Journal of Human Genetics</i> , 1997 , 61, 1397-404	11	101
23	Panic disorder with familial bipolar disorder. <i>Biological Psychiatry</i> , 1997 , 42, 90-5	7.9	81
22	Quantitative analysis of leukocyte mitochondrial DNA deletion in affective disorders. <i>Biological Psychiatry</i> , 1997 , 42, 311-6	7.9	11
21	Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. <i>Biological Psychiatry</i> , 1997 , 42, 871-5	7.9	97
20	Genomic survey of bipolar illness in the NIMH genetics initiative pedigrees: a preliminary report. <i>American Journal of Medical Genetics Part A</i> , 1997 , 74, 227-37		103
19	Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: Chromosomes 3, 5, 15, 16, 17, and 22 1997 , 74, 238-246		133
18	Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 1, 6, 8, 10, and 12. <i>American Journal of Medical Genetics Part A</i> , 1997 , 74, 247-53		109
17	Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 4, 7, 9, 18, 19, 20, and 21q. <i>American Journal of Medical Genetics Part A</i> , 1997 , 74, 254-62		132

LIST OF PUBLICATIONS

16	Initial genome screen for bipolar disorder in the NIMH genetics initiative pedigrees: Chromosomes 2, 11, 13, 14, and X 1997 , 74, 263-269		89
15	Description of the Genetic Analysis Workshop 10 bipolar disorder linkage data sets. <i>Genetic Epidemiology</i> , 1997 , 14, 563-8	2.6	14
14	Cyclic adenosine 3',5'-monophosphate and glucose stimulate thyroxine 5'-deiodinase type II in cultured mouse neuroblastoma cells. <i>Metabolism: Clinical and Experimental</i> , 1990 , 39, 474-9	12.7	2
13	Carbohydrate reactivation of thyroxine 5'-deiodinase (type II) in cultured mouse neuroblastoma cells is dependent upon new protein synthesis. <i>Endocrinology</i> , 1989 , 124, 635-41	4.8	12
12	Hyperactivity following posterior cortical injury is lateralized, sensitive to lesion size and independent of the nigrostriatal dopamine system. <i>Brain Research</i> , 1989 , 503, 185-90	3.7	10
11	Cutaneous cryptococcosis without evidence of systemic involvement. <i>Journal of the American Academy of Dermatology</i> , 1984 , 11, 371-4	4.5	24
10	The Diagnosis of Pulmonary Alveolar Proteinosis by Sputum Examination. <i>Diseases of the Chest</i> , 1966 , 49, 326-332		10
9	Pharmacogenetics and mood disorders368-379		
8	Polygenic Risk for Anxiety Influences Anxiety Comorbidity and Suicidal Behavior in Bipolar Disorder. SSRN Electronic Journal,	1	1
7	Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder		28
6	Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness		1
5	Genome-wide association study of over 40,000 bipolar disorder cases provides new insights into the underlying biology		11
4	Polygenic scores for major depressive disorder and depressive symptoms predict response to lithium in patients with bipolar disorder		1
3	Deep transcriptome sequencing of subgenual anterior cingulate cortex reveals disorder-specific expression changes in major psychiatric disorders		1
2	Psychiatric Disorders: The Search for Genes1-6		
1	Characterization of Age and Polarity at Onset in Bipolar Disorder		1