
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Mechanochemical Modification of Porous Silicon with Arginine. Surfaces, 2022, 5, 143-154.	2.3	0
2	Metal-Assisted Catalytic Etching (MACE) for Nanofabrication of Semiconductor Powders. Micromachines, 2021, 12, 776.	2.9	1
3	Fabrication of electrospun nanofiber composite of g-C3N4 and Au nanoparticles as plasmonic photocatalyst. Surfaces and Interfaces, 2021, 26, 101367.	3.0	5
4	Photochemical and nonthermal chemical modification of porous silicon. , 2021, , 51-112.		0
5	A Tribute to Professor Gaetano Granozzi and His Contributions to Surface Science on the Occasion of His 70th Birthday. Surfaces, 2021, 4, 293-294.	2.3	0
6	Controlling the Nature of Etched Si Nanostructures: High- versus Low-Load Metal-Assisted Catalytic Etching (MACE) of Si Powders. ACS Applied Materials & Interfaces, 2020, 12, 4787-4796.	8.0	11
7	Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders. ACS Applied Materials & Interfaces, 2020, 12, 48969-48981.	8.0	14
8	Response of Photoluminescence of H-Terminated and Hydrosilylated Porous Si Powders to Rinsing and Temperature. Surfaces, 2020, 3, 366-380.	2.3	3
9	Injection Metal-Assisted Catalytic Etching (MACE) of Si Powder: Discovery of Low-Load MACE and Pore Distribution Tunability Using Ag, Au, Pd, Pt and Cu Catalysts. ECS Meeting Abstracts, 2020, MA2020-02, 1219-1219.	0.0	0
10	Effect of Metal-Assisted Catalytic Etching (MACE) on Single-Crystal Si Wafers With Faceted Macropores. Microscopy and Microanalysis, 2019, 25, 2124-2125.	0.4	1
11	Hierarchical Nanostructuring of Porous Silicon with Electrochemical and Regenerative Electroless Etching. ACS Nano, 2019, 13, 13056-13064.	14.6	8
12	Crystallographically Determined Etching and Its Relevance to the Metal-Assisted Catalytic Etching (MACE) of Silicon Powders. Frontiers in Chemistry, 2019, 6, 651.	3.6	16
13	Silicon Surface Photochemistry. , 2018, , 611-620.		3
14	Crystallographically Defined Silicon Macropore Membranes. Open Material Sciences, 2018, 4, 33-41.	0.8	2
15	Plume and Nanoparticle Formation During Laser Ablation. , 2018, , 594-603.		4
16	Hierarchical Porous Silicon and Porous Silicon Nanowires Produced with Regenerative Electroless Etching (ReEtching) and Metal Assisted Catalytic Etching (MACE). ECS Transactions, 2018, 86, 65-70.	0.5	3
17	Porous Silicon Formation by Stain Etching. , 2018, , 39-59.		1
18	Hierarchical Porous Silicon and Porous Silicon Nanowires Produced with Regenerative Electroless Etching (ReEtching) and Metal Assisted Catalytic Etching (MACE). ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
19	Porous Silicon Formation by Galvanic Etching. , 2018, , 25-37.		0
20	Silicon Microfabrication: Controlled Microfabrication of Highâ€Aspectâ€Ratio Structures in Silicon at the Highest Etching Rates: The Role of H ₂ O ₂ in the Anodic Dissolution of Silicon in Acidic Electrolytes (Adv. Funct. Mater. 6/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
21	Controlled Fabrication of High-Aspect-Ratio Microstructures in Silicon at Etching Rates Beyond State-of-the-Art Microstructuring Technologies. ECS Transactions, 2017, 77, 199-205.	0.5	3
22	Regenerative Electroless Etching of Silicon. Angewandte Chemie - International Edition, 2017, 56, 624-627.	13.8	25
23	Controlled Microfabrication of Highâ€Aspectâ€Ratio Structures in Silicon at the Highest Etching Rates: The Role of H ₂ O ₂ in the Anodic Dissolution of Silicon in Acidic Electrolytes. Advanced Functional Materials, 2017, 27, 1604310.	14.9	30
24	Regenerative Electroless Etching of Silicon. Angewandte Chemie, 2017, 129, 639-642.	2.0	4
25	Porous Silicon Formation by Galvanic Etching. , 2017, , 1-13.		0
26	Porous Silicon Formation by Stain Etching. , 2017, , 1-21.		1
27	Controlled Fabrication of High-Aspect-Ratio Microstructures in Silicon at Etching Rates Beyond State-of-the-Art Microstructuring Technologies. ECS Meeting Abstracts, 2017, , .	0.0	0
28	Regenerative Electroless Etching of Silicon. ECS Meeting Abstracts, 2017, , .	0.0	0
29	Subtractive methods to form pyrite and sulfide nanostructures of Fe, Co, Ni, Cu and Zn. Current Opinion in Solid State and Materials Science, 2016, 20, 371-373.	11.5	3
30	(Invited) The Effects of Laser Ablation Texturing and Nanoparticles on Anodic Nanotube and Porous Film Formation. ECS Transactions, 2016, 75, 3-8.	0.5	0
31	Electron transfer during metal-assisted and stain etching of silicon. Semiconductor Science and Technology, 2016, 31, 014002.	2.0	23
32	(Invited) The Effects of Laser Ablation Texturing and Nanoparticles on Anodic Nanotube and Porous Film Formation. ECS Meeting Abstracts, 2016, , .	0.0	0
33	Porous Layers Composed of Oxide Crystallites Formed by the Combination of Laser Ablation and Anodization of Metal. ECS Transactions, 2015, 69, 155-160.	0.5	0
34	The stoichiometry of metal assisted etching (MAE) of Si in V2O5+HF and HOOH+HF solutions. Electrochimica Acta, 2015, 158, 219-228.	5.2	26
35	Porous Silicon Formation by Stain Etching. , 2014, , 35-48.		4
36	Porous Silicon Formation by Galvanic Etching. , 2014, , 23-33.		1

#	Article	IF	CITATIONS
37	Porous Silicon Formation by Galvanic Etching. , 2014, , 1-11.		1
38	Porous Silicon Formation by Stain Etching. , 2014, , 1-14.		0
39	The mechanism of galvanic/metal-assisted etching of silicon. Nanoscale Research Letters, 2014, 9, 432.	5.7	57
40	Photochemical and nonthermal chemical modification of porous silicon for biomedical applications. , 2014, , 52-80.		4
41	Bubbles: A review of their relationship to the formation of thin films and porous materials. Open Material Sciences, 2014, 1, .	0.8	10
42	The Mechanism of Photohydrosilylation on Silicon and Porous Silicon Surfaces. Journal of the American Chemical Society, 2013, 135, 11408-11412.	13.7	14
43	The Stoichiometry of Electroless Silicon Etching in Solutions of V ₂ O ₅ and HF. Angewandte Chemie - International Edition, 2013, 52, 6731-6734.	13.8	34
44	Stain Etching of Silicon With and Without the Aid of Metal Catalysts. ECS Transactions, 2013, 50, 25-30.	0.5	15
45	Test of Marcus Theory Predictions for Electroless Etching of Silicon. Journal of Physical Chemistry C, 2012, 116, 21472-21481.	3.1	25
46	Electroless etching of Si with IO3â \in " and related species. Nanoscale Research Letters, 2012, 7, 323.	5.7	12
47	(Invited) Rational Design of Etchants for Electroless Porous Silicon Formation. ECS Transactions, 2011, 33, 23-28.	0.5	13
48	Stain etching of silicon with V2O5. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1749-1753.	0.8	18
49	Charge Transfer and Nanostructure Formation During Electroless Etching of Silicon. Journal of Physical Chemistry C, 2010, 114, 22098-22105.	3.1	58
50	Dynamics of porous silicon formation by etching in HF + V2O5solutions. Molecular Physics, 2010, 108, 1033-1043.	1.7	34
51	Structure and photoluminescence studies of porous silicon formed in ferric ion containing stain etchants. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1240-1244.	1.8	23
52	Development of endothelial cells on pillarâ€covered silicon. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1356-1360.	1.8	8
53	Etching of silicon in fluoride solutions. Surface Science, 2009, 603, 1904-1911.	1.9	82
54	Stain Etching with Fe(III), V(V), and Ce(IV) to Form Microporous Silicon. Electrochemical and Solid-State Letters, 2009, 12, D22.	2.2	34

#	Article	IF	CITATIONS
55	Stain Etching with Ferric Ion to Produce Thick Porous Silicon Films. ECS Transactions, 2009, 16, 323-328.	0.5	1
56	Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2008, 90, 399-402.	2.3	146
57	Chapter 16 Growth and Etching of Semiconductors. Handbook of Surface Science, 2008, , 787-870.	0.3	7
58	Wet Etching of Pillar-Covered Silicon Surfaces: Formation of Crystallographically Defined Macropores. Journal of the Electrochemical Society, 2008, 155, H164.	2.9	12
59	Pillars formed by laser ablation and modified by wet etching. , 2007, 6586, 122.		4
60	Solid structure formation during the liquid/solid phase transition. Current Opinion in Solid State and Materials Science, 2007, 11, 76-85.	11.5	39
61	Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation. Nanotechnology, 2007, 18, 195302.	2.6	78
62	Surface texturing of Si, porous Si and TiO2 by laser ablation. Applied Surface Science, 2007, 253, 6575-6579.	6.1	21
63	Sum frequency generation from planar and porous silicon in contact with liquids. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1356-1361.	1.8	4
64	Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces. Applied Surface Science, 2007, 253, 6580-6583.	6.1	35
65	Using Effusive Molecular Beams and Microcanonical Unimolecular Rate Theory to Characterize CH4Dissociation on Pt(111). Journal of Physical Chemistry B, 2006, 110, 6705-6713.	2.6	46
66	Effects of Stain Etchant Composition on the Photoluminescence and Morphology of Porous Silicon. Journal of the Electrochemical Society, 2006, 153, C19.	2.9	69
67	Effusive Molecular Beam Study of C2H6Dissociation on Pt(111). Journal of Physical Chemistry B, 2006, 110, 6714-6720.	2.6	13
68	Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Current Opinion in Solid State and Materials Science, 2006, 10, 182-191.	11.5	259
69	Characterization of chemisorption on porous silicon by sum frequency generation. , 2006, , .		0
70	Solidification driven extrusion of spikes during laser melting of silicon pillars. Nanotechnology, 2006, 17, 2741-2744.	2.6	22
71	Laser assisted and wet chemical etching of silicon nanostructures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1474-1479.	2.1	28
72	Surface photochemistry in the vacuum and extreme ultraviolet (VUV and XUV): high harmonic generation, H2O and O2. Journal of Physics Condensed Matter, 2006, 18, S1655-S1675.	1.8	8

#	Article	IF	CITATIONS
73	The Composition of Fluoride Solutions. Journal of the Electrochemical Society, 2005, 152, J99.	2.9	55
74	Stain etching of silicon pillars and macropores. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1422-1426.	1.8	19
75	Non-lithographic method of forming ordered arrays of silicon pillars and macropores. Journal Physics D: Applied Physics, 2005, 38, 632-636.	2.8	26
76	Silicon nanostructures from electroless electrochemical etching. Current Opinion in Solid State and Materials Science, 2005, 9, 73-83.	11.5	137
77	Laser-etched silicon pillars and their porosification. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1647-1651.	2.1	27
78	Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6. Applied Physics A: Materials Science and Processing, 2004, 78, 381-385.	2.3	39
79	Non-adiabatic and ultrafast dynamics of hydrogen adsorbed on silicon. Current Opinion in Solid State and Materials Science, 2004, 8, 353-366.	11.5	19
80	The mechanism of Si etching in fluoride solutions. Physical Chemistry Chemical Physics, 2003, 5, 1270-1278.	2.8	98
81	The structure of water on the () surface of graphite. Surface Science, 2003, 532-535, 166-172.	1.9	75
82	Etchant composition effects on porous silicon morphology and photoluminescence. Physica Status Solidi A, 2003, 197, 117-122.	1.7	5
83	Surface photochemistry induced by ultrafast pulses of vacuum ultraviolet light: Physisorbed oxygen on graphite. Physical Review B, 2002, 66, .	3.2	6
84	Mechanisms of visible photoluminescence from nanoscale silicon cones. Journal of Applied Physics, 2002, 91, 3294-3298.	2.5	20
85	Laser-Assisted Formation of Porous Silicon in Diverse Fluoride Solutions:Â Hexafluorosilicate Deposition. Journal of Physical Chemistry B, 2002, 106, 4424-4431.	2.6	35
86	Vacuum ultraviolet surface photochemistry of water adsorbed on graphite. Journal of Chemical Physics, 2002, 117, 6667-6672.	3.0	13
87	Laser-Assisted Formation of Porous Si in Diverse Fluoride Solutions:  Reaction Kinetics and Mechanistic Implications. Journal of Physical Chemistry B, 2001, 105, 3864-3871.	2.6	43
88	Tunable pulsed vacuum ultraviolet light source for surface science and materials spectroscopy based on high order harmonic generation. Review of Scientific Instruments, 2001, 72, 1977-1983.	1.3	23
89	Laser etching processes : Towards sub-picosecond X-UV irradiation. European Physical Journal Special Topics, 2001, 11, Pr2-499-Pr2-502.	0.2	0
90	Source UVX par génération d'harmoniques d'ordre élevé : applications potentielles à la physique des surfaces. European Physical Journal Special Topics, 2001, 11, Pr7-73-Pr7-76.	0.2	0

#	Article	IF	CITATIONS
91	The Effect of Etchant Composition on Film Structure during Laser-Assisted Porous Si Growth. Physica Status Solidi A, 2000, 182, 87-91.	1.7	7
92	In situ photoluminescence studies of photochemically grown porous silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 157-160.	3.5	10
93	Applications of a novel method for determining the rate of production of photochemical porous silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 132-135.	3.5	9
94	On the role of the pore filling medium in photoluminescence from photochemically etched porous silicon. Journal of Applied Physics, 2000, 88, 2472-2479.	2.5	46
95	Photoelectrochemical etching of Si and porous Si in aqueous HF. Physical Chemistry Chemical Physics, 2000, 2, 277-281.	2.8	52
96	Observation and application of optical interference and diffraction effects in reflection from photochemically fabricated Gaussian interfaces. Journal of Applied Physics, 1999, 86, 1800-1807.	2.5	17
97	Depletion-electric-field-induced second-harmonic generation near oxidized GaAs(001) surfaces. Physical Review B, 1997, 55, 10694-10706.	3.2	47
98			1
99	Quantum state-resolved study of NH3 photodesorbed from GaAs(1 0 0). Nuclear Instruments & Methods in Physics Research B, 1995, 101, 49-52.	1.4	7
100	Negative ion resonances in electron scattering from chemisorbed O 2 on Pd(111). Surface Science, 1995, 331-333, 267-271.	1.9	9
101	Investigations of the adsorption dynamics of D 2 on Si(100). Surface Science, 1995, 331-333, 485-489.	1.9	21
102	Interactions in co-adsorbed layers. Surface Science, 1995, 334, 19-28.	1.9	12
103	Beam investigations of D2 adsorption on Si(100): On the importance of lattice excitations in the reaction dynamics. Journal of Chemical Physics, 1994, 101, 7082-7094.	3.0	60
104	Hydrogen adsorption on and desorption from Si: Considerations on the applicability of detailed balance. Physical Review Letters, 1994, 72, 1356-1359.	7.8	113
105	O2/Pd(111). Clarification of the correspondence between thermal desorption features and chemisorption states. Chemical Physics Letters, 1994, 219, 113-117.	2.6	62
106	Energy partitioning in the reaction 2H2+ O2? 2H2O on Pd(111). Faraday Discussions, 1993, 96, 265.	3.2	14
107	Internalâ€state distributions of H2 desorbed from mono―and dihydride species on Si(100). Journal of Chemical Physics, 1992, 97, 3704-3709.	3.0	59
108	Internalâ€state distribution of recombinative hydrogen desorption from Si(100). Journal of Chemical Physics, 1992, 96, 3995-4006.	3.0	87

#	Article	IF	CITATIONS
109	Recombinative desorption of H2 on Si(100)â€(2×1) and Si(111)â€(7×7): Comparison of internal state distributions. Journal of Chemical Physics, 1992, 97, 1520-1530.	3.0	81
110	Stateâ€specific study of hydrogen desorption from Si(100)â€(2×1): Comparison of disilane and hydrogen adsorption. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2287-2291.	2.1	16
111	Probing the dynamics of hydrogen recombination on Si(100). Journal of Chemical Physics, 1991, 95, 5482-5485.	3.0	39
112	Hydrogen desorption and subsequent reconstruction on natural diamond surfaces. Carbon, 1990, 28, 751-752.	10.3	4
113	Normally unoccupied states on C(111) (diamond) (2×1): Support for a relaxedπ-bonded chain model. Physical Review B, 1989, 39, 1381-1384.	3.2	90
114	Rotational population and alignment distributions for inelastic scattering and trapping/desorption of NO on Pt(111). Journal of Chemical Physics, 1989, 91, 3182-3195.	3.0	83
115	Rotational alignment of NO from Pt(111). Inelastic scattering and molecular desorption. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 1325.	1.1	8
116	Summary Abstract: Characterization of empty states on C(111) (diamond) (2×1) via angleâ€resolved twoâ€photon photoemission. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 814-816.	2.1	7
117	Rotational alignment of NO desorbing from Pt(111). Journal of Chemical Physics, 1987, 87, 5038-5039.	3.0	70
118	Ion angular distribution of species desorbed from single crystal surfaces by electron impact. Nuclear Instruments & Methods in Physics Research B, 1987, 27, 147-154.	1.4	19
119	Molecular orientation on metal surfaces by electrostatic interactions: The adsorption of cyclopentene on a stepped (221) silver surface. Journal of Chemical Physics, 1986, 85, 6093-6099.	3.0	12
120	Infrared spectroscopic investigation of the rhodium gemâ€dicarbonyl surface species. Journal of Chemical Physics, 1983, 79, 1026-1030.	3.0	59