Winifred F Frick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Emerging Disease Causes Regional Population Collapse of a Common North American Bat Species. Science, 2010, 329, 679-682.	6.0	735
2	Sociality, densityâ€dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, whiteâ€nose syndrome. Ecology Letters, 2012, 15, 1050-1057.	3.0	299
3	A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 2020, 1469, 5-25.	1.8	297
4	Disease alters macroecological patterns of <scp>N</scp> orth <scp>A</scp> merican bats. Global Ecology and Biogeography, 2015, 24, 741-749.	2.7	206
5	Influence of climate and reproductive timing on demography of little brown myotis <i>Myotis lucifugus</i> . Journal of Animal Ecology, 2010, 79, 128-136.	1.3	187
6	Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142335.	1.2	181
7	Fatalities at wind turbines may threaten population viability of a migratory bat. Biological Conservation, 2017, 209, 172-177.	1.9	178
8	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	1.9	147
9	Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathogens, 2020, 16, e1008758.	2.1	127
10	Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome. PLoS ONE, 2015, 10, e0121329.	1.1	120
11	The scope and severity of whiteâ€nose syndrome on hibernating bats in North America. Conservation Biology, 2021, 35, 1586-1597.	2.4	102
12	Pathogen dynamics during invasion and establishment of whiteâ€nose syndrome explain mechanisms of host persistence. Ecology, 2017, 98, 624-631.	1.5	100
13	Drivers of variation in species impacts for a multi-host fungal disease of bats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150456.	1.8	92
14	Invasion Dynamics of White-Nose Syndrome Fungus, Midwestern United States, 2012–2014. Emerging Infectious Diseases, 2015, 21, 1023-1026.	2.0	88
15	Resistance in persisting bat populations after white-nose syndrome invasion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160044.	1.8	86
16	White-nose syndrome: is this emerging disease a threat to European bats?. Trends in Ecology and Evolution, 2011, 26, 570-576.	4.2	82
17	Partly Cloudy with a Chance of Migration: Weather, Radars, and Aeroecology. Bulletin of the American Meteorological Society, 2012, 93, 669-686.	1.7	81
18	Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Frontiers in Microbiology, 2016, 7, 1753.	1.5	81

WINIFRED F FRICK

#	Article	IF	CITATIONS
19	Long-Term Persistence of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome, in the Absence of Bats. EcoHealth, 2015, 12, 330-333.	0.9	68
20	Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biology Letters, 2011, 7, 950-953.	1.0	62
21	Higher fat stores contribute to persistence of little brown bat populations with whiteâ€nose syndrome. Journal of Animal Ecology, 2019, 88, 591-600.	1.3	62
22	Estimating animal densities in the aerosphere using weather radar: To <i>Z</i> or not to <i>Z</i> ?. Ecosphere, 2012, 3, 1-19.	1.0	61
23	ESTIMATION OF HABITAT-SPECIFIC DEMOGRAPHY AND POPULATION GROWTH FOR PEREGRINE FALCONS IN CALIFORNIA. , 2003, 13, 1802-1816.		59
24	Efficacy of a probiotic bacterium to treat bats affected by the disease whiteâ€nose syndrome. Journal of Applied Ecology, 2017, 54, 701-708.	1.9	59
25	Climate and Weather Impact Timing of Emergence of Bats. PLoS ONE, 2012, 7, e42737.	1.1	57
26	White-Nose Syndrome in Bats. , 2016, , 245-262.		57
27	Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA. PLoS ONE, 2013, 8, e57884.	1.1	56
28	Widespread Bat White-Nose Syndrome Fungus, Northeastern China. Emerging Infectious Diseases, 2015, 22, 140-142.	2.0	54
29	Cryptic connections illuminate pathogen transmission within community networks. Nature, 2018, 563, 710-713.	13.7	54
30	Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7255-7262.	3.3	53
31	Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Scientific Reports, 2019, 9, 9158.	1.6	50
32	Principles and Patterns of Bat Movements: From Aerodynamics to Ecology. Quarterly Review of Biology, 2017, 92, 267-287.	0.0	46
33	Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere, 2012, 3, art16.	1.0	45
34	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	0.9	45
35	Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 163-176.	0.7	42
36	Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152861.	1.2	40

WINIFRED F FRICK

#	Article	IF	CITATIONS
37	Conservation implications of ameliorating survival of little brown bats with whiteâ€nose syndrome. Ecological Applications, 2015, 25, 1832-1840.	1.8	39
38	White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods. EcoHealth, 2016, 13, 60-71.	0.9	39
39	Assessing fatality minimization for hoary bats amid continued wind energy development. Biological Conservation, 2021, 262, 109309.	1.9	37
40	Efficacy of Visual Surveys for White-Nose Syndrome at Bat Hibernacula. PLoS ONE, 2015, 10, e0133390.	1.1	34
41	Acoustic monitoring of bats – current considerations of options for long-term monitoring and future opportunities. Therya, 2013, 4, 69-78.	0.2	32
42	Direct Detection of Fungal Siderophores on Bats with White-Nose Syndrome via Fluorescence Microscopy-Guided Ambient Ionization Mass Spectrometry. PLoS ONE, 2015, 10, e0119668.	1.1	30
43	POTENTIAL EFFECTS OF ENVIRONMENTAL CONTAMINATION ON YUMA MYOTIS DEMOGRAPHY AND POPULATION GROWTH. , 2007, 17, 1213-1222.		28
44	Nestedness of desert bat assemblages: species composition patterns in insular and terrestrial landscapes. Oecologia, 2009, 158, 687-697.	0.9	28
45	Facultative Nectar-Feeding Behavior in a Cleaning Insectivorous Bat (<i>Antrozous pallidus</i>). Journal of Mammalogy, 2009, 90, 1157-1164.	0.6	27
46	Insectivorous Bat Pollinates Columnar Cactus More Effectively per Visit than Specialized Nectar Bat. American Naturalist, 2013, 181, 137-144.	1.0	27
47	Seasonal reliance on nectar by an insectivorous bat revealed by stable isotopes. Oecologia, 2014, 174, 55-65.	0.9	24
48	Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses, 2021, 13, 1356.	1.5	23
49	Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin. PLoS ONE, 2013, 8, e76616.	1.1	22
50	Identifying research needs to inform whiteâ€nose syndrome management decisions. Conservation Science and Practice, 2020, 2, e220.	0.9	21
51	Toward integrating citizen science and radar data for migrant bird conservation. Remote Sensing in Ecology and Conservation, 2018, 4, 127-136.	2.2	17
52	NABat: A top-down, bottom-up solution to collaborative continental-scale monitoring. Ambio, 2021, 50, 901-913.	2.8	16
53	Bats of the Chilean temperate rainforest: patterns of landscape use in a mosaic of native forests, eucalyptus plantations and grasslands within a South American biodiversity hotspot. Biodiversity and Conservation, 2014, 23, 1949-1963.	1.2	12
54	Aeroecology. , 2013, , 149-167.		12

4

WINIFRED F FRICK

#	Article	IF	CITATIONS
55	Genetic diversity distribution among seasonal colonies of a nectar-feeding bat (Leptonycteris) Tj ETQq1 1 0.78431	4.rgBT /O	verlock 10
56	Temperature alone is insufficient to understand hibernation energetics. Journal of Experimental Biology, 2021, 224, .	0.8	11
57	A practical conservation tool to combine diverse types of evidence for transparent evidenceâ€based decisionâ€making. Conservation Science and Practice, 2022, 4, e579.	0.9	11
58	Island biogeography of bats in Baja California, Mexico: patterns of bat species richness in a near-shore archipelago. Journal of Biogeography, 2007, 35, 071009214220001-???.	1.4	10
59	Patterns of island occupancy in bats: influences of area and isolation on insular incidence of volant mammals. Global Ecology and Biogeography, 2008, 17, 622-632.	2.7	9
60	Planning practical evidence-based decision making in conservation within time constraints: the Strategic Evidence Assessment Framework. Journal for Nature Conservation, 2021, 60, 125975.	0.8	9
61	Limited refugia and high velocity range-shifts predicted for bat communities in drought-risk areas of the Northern Hemisphere. Global Ecology and Conservation, 2021, 28, e01608.	1.0	9
62	Seasonal ecology of a migratory nectar-feeding bat at the edge of its range. Journal of Mammalogy, 2018, 99, 1072-1081.	0.6	8
63	The Lofty Lives of Aerial Consumers: Linking Population Ecology and Aeroecology. , 2017, , 379-399.		6
64	Bats Flying at High Altitudes. Fascinating Life Sciences, 2021, , 189-205.	0.5	6
65	Weather surveillance radar as an objective tool for monitoring bat phenology and biogeography. Journal of Engineering, 2019, 2019, 7062-7064.	0.6	5
66	Principles for the production of evidenceâ€based guidance for conservation actions. Conservation Science and Practice, 2022, 4, .	0.9	5
67	Experimental inoculation trial to determine the effects of temperature and humidity on White-nose Syndrome in hibernating bats. Scientific Reports, 2022, 12, 971.	1.6	4
68	Using behavioral and stable isotope data to quantify rare dietary plasticity in a temperate bat. Journal of Mammalogy, 0, , gyw196.	0.6	3
69	Behavioural microclimate selection and physiological responses to environmental conditions in a hibernating bat. Canadian Journal of Zoology, 2022, 100, 233-238.	0.4	3
70	Rediscovery of the critically endangered Hill's horseshoe bat (Rhinolophus hilli) and other new records of bat species in Rwanda. Biodiversity Data Journal, 0, 10, .	0.4	0