Michael R Yeaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926047/publications.pdf

Version: 2024-02-01

73 papers 5,470 citations

35 h-index 71 g-index

74 all docs

74 docs citations

74 times ranked 6270 citing authors

#	Article	IF	CITATIONS
1	Astrocytic outer retinal layer thinning is not a feature in AQP4-IgG seropositive neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 188-195.	1.9	13
2	Impacts of NaHCO3 on \hat{I}^2 -Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes. Antibiotics, 2022, 11 , 462.	3.7	4
3	Longitudinal Retinal Changes in <scp>MOGAD</scp> . Annals of Neurology, 2022, 92, 476-485.	5.3	20
4	Identification of Candida glabrata Transcriptional Regulators That Govern Stress Resistance and Virulence. Infection and Immunity, 2021, 89, .	2,2	8
5	Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathogens, 2021, 17, e1009221.	4.7	45
6	Platelet Deficiency Represents a Modifiable Risk Factor for Periprosthetic Joint Infection in a Preclinical Mouse Model. Journal of Bone and Joint Surgery - Series A, 2021, 103, 1016-1025.	3.0	6
7	Human DNA methylation signatures differentiate persistent from resolving MRSA bacteremia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
8	The costs of care from a US claims database in patients with neuromyelitis optica spectrum disorder. Journal of the Neurological Sciences, 2021, 427, 117553.	0.6	3
9	Immunosuppression in Glomerular Diseases: Implications for SARS-CoV-2 Vaccines and COVID-19. Glomerular Diseases, 2021, 1, 277-293.	1.0	4
10	Burden and cost of comorbidities in patients with neuromyelitis optica spectrum disorder. Journal of the Neurological Sciences, 2021, 427, 117530.	0.6	6
11	Retinal Optical Coherence Tomography in Neuromyelitis Optica. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	47
12	Role of the Staphylococcus aureus Extracellular Loop of GraS in Resistance to Distinct Human Defense Peptides in PMN and Invasive Cardiovascular infections. Infection and Immunity, 2021, 89, e0034721.	2.2	5
13	Balancing Potential Benefits and Risks of Bruton Tyrosine Kinase Inhibitor Therapies in Multiple Sclerosis During the COVID-19 Pandemic. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	9
14	PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
15	New Mechanistic Insights into Purine Biosynthesis with Second Messenger c-di-AMP in Relation to Biofilm-Related Persistent Methicillin-Resistant Staphylococcus aureus Infections. MBio, 2021, 12, e0208121.	4.1	12
16	Cytoprotective IgG antibodies in sera from a subset of patients with AQP4-IgG seropositive neuromyelitis optica spectrum disorder. Scientific Reports, 2021, 11, 21962.	3.3	11
17	Neuromyelitis optica spectrum disorder in China: Quality of life and medical care experience. Multiple Sclerosis and Related Disorders, 2020, 46, 102542.	2.0	24
18	Discovery of Novel Type II Bacteriocins Using a New High-Dimensional Bioinformatic Algorithm. Frontiers in Immunology, 2020, 11, 1873.	4.8	13

#	Article	lF	Citations
19	Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO). BMJ Open, 2020, 10, e035397.	1.9	10
20	Monoclonal IgM Antibodies Targeting Candida albicans Hyr1 Provide Cross-Kingdom Protection Against Gram-Negative Bacteria. Frontiers in Immunology, 2020, 11, 76.	4.8	11
21	Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Frontiers in Neurology, 2020, 11, 501.	2.4	216
22	Diagnostic procedures in suspected attacks in patients with neuromyelitis optica spectrum disorders: Results of an international survey. Multiple Sclerosis and Related Disorders, 2020, 41, 102027.	2.0	11
23	Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLoS Computational Biology, 2019, 15, e1007087.	3.2	16
24	Clonal Vγ6 ⁺ VÎ′4 ⁺ T cells promote IL-17–mediated immunity against <i>Staphylococcus aureus</i> skin infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10917-10926.	7.1	75
25	CD55 upregulation in astrocytes by statins as potential therapy for AQP4-lgG seropositive neuromyelitis optica. Journal of Neuroinflammation, 2019, 16, 57.	7.2	16
26	The Role of Platelets in Antimicrobial Host Defense. , 2019, , 523-546.		6
27	Unifying structural signature of eukaryotic \hat{l}_{\pm} -helical host defense peptides. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6944-6953.	7.1	39
28	Genetic variation of DNA methyltransferase-3A contributes to protection against persistent MRSA bacteremia in patients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20087-20096.	7.1	20
29	Protective immunity in recurrent <i>Staphylococcus aureus</i> infection reflects localized immune signatures and macrophage-conferred memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11111-E11119.	7.1	63
30	Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-20.	4.0	17
31	Role of Purine Biosynthesis in Persistent Methicillin-Resistant Staphylococcus aureus Infection. Journal of Infectious Diseases, 2018, 218, 1367-1377.	4.0	29
32	Innovative Approaches to Improve Anti-Infective Vaccine Efficacy. Annual Review of Pharmacology and Toxicology, 2017, 57, 189-222.	9.4	9
33	Innate Immune Memory Contributes to Host Defense against Recurrent Skin and Skin Structure Infections Caused by Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2017, 85, .	2.2	38
34	The Global Regulon <i>sarA</i> Regulates β-Lactam Antibiotic Resistance in Methicillin-Resistant <i>Staphylococcus aureus</i> In Vitro and in Endovascular Infections. Journal of Infectious Diseases, 2016, 214, 1421-1429.	4.0	37
35	The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action. Infection and Immunity, 2016, 84, 459-466.	2.2	33
36	Nonredundant Roles of Interleukin-17A (IL-17A) and IL-22 in Murine Host Defense against Cutaneous and Hematogenous Infection Due to Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2015, 83, 4427-4437.	2.2	58

#	Article	IF	CITATIONS
37	Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus. Frontiers in Immunology, 2014, 5, 463.	4.8	21
38	Site-Specific Mutation of the Sensor Kinase GraS in Staphylococcus aureus Alters the Adaptive Response to Distinct Cationic Antimicrobial Peptides. Infection and Immunity, 2014, 82, 5336-5345.	2.2	41
39	Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5555-63.	7.1	61
40	Platelets: at the nexus of antimicrobial defence. Nature Reviews Microbiology, 2014, 12, 426-437.	28.6	268
41	Heterogeneity of <i>mprF</i> Sequences in Methicillin-Resistant Staphylococcus aureus Clinical Isolates: Role in Cross-Resistance between Daptomycin and Host Defense Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 7462-7467.	3.2	59
42	Phenotypic and Genotypic Characterization of Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Strains: Relative Roles of mprF and dlt Operons. PLoS ONE, 2014, 9, e107426.	2.5	105
43	Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans. Eukaryotic Cell, 2013, 12, 411-419.	3.4	19
44	Emergence of Daptomycin Resistance in Daptomycin-NaÃ-ve Rabbits with Methicillin-Resistant Staphylococcus aureus Prosthetic Joint Infection Is Associated with Resistance to Host Defense Cationic Peptides and mprF Polymorphisms. PLoS ONE, 2013, 8, e71151.	2.5	76
45	The Staphylococcus aureus Two-Component Regulatory System, GraRS, Senses and Confers Resistance to Selected Cationic Antimicrobial Peptides. Infection and Immunity, 2012, 80, 74-81.	2.2	159
46	Emerging Themes and Therapeutic Prospects for Anti-Infective Peptides. Annual Review of Pharmacology and Toxicology, 2012, 52, 337-360.	9.4	132
47	Correlation of Daptomycin Resistance in a Clinical <i>Staphylococcus aureus</i> Strain with Increased Cell Wall Teichoic Acid Production and <scp>d</scp> -Alanylation. Antimicrobial Agents and Chemotherapy, 2011, 55, 3922-3928.	3.2	117
48	Context Mediates Antimicrobial Efficacy of Kinocidin Congener Peptide RP-1. PLoS ONE, 2011, 6, e26727.	2.5	16
49	Platelets in defense against bacterial pathogens. Cellular and Molecular Life Sciences, 2010, 67, 525-544.	5.4	253
50	Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in <i>Staphylococcus aureus</i> : Evidence for Multiple Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2010, 54, 3079-3085.	3.2	128
51	Bacterial–platelet interactions: virulence meets host defense. Future Microbiology, 2010, 5, 471-506.	2.0	60
52	Enhanced Expression of <i>dltABCD </i> Is Associated with the Development of Daptomycin Nonsusceptibility in a Clinical Endocarditis Isolate of <i>Staphylococcus aureus </i> Infectious Diseases, 2009, 200, 1916-1920.	4.0	147
53	Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14972-14977.	7.1	97
54	Phenotypic and Genotypic Characteristics of Persistent Methicillinâ∈Resistant∢i>Staphylococcus aureus∢i>Bacteremia In Vitro and in an Experimental Endocarditis Model. Journal of Infectious Diseases, 2009, 199, 201-208.	4.0	106

#	Article	IF	CITATIONS
55	<i>SSD1</i> Is Integral to Host Defense Peptide Resistance in <i>Candida albicans</i> Eukaryotic Cell, 2008, 7, 1318-1327.	3.4	38
56	Failures in Clinical Treatment of <i>Staphylococcus aureus</i> Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding. Antimicrobial Agents and Chemotherapy, 2008, 52, 269-278.	3.2	305
57	Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLoS Biology, 2007, 5, e64.	5.6	492
58	Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 609-619.	2.6	75
59	Structural correlates of antimicrobial efficacy in IL-8 and related human kinocidins. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 598-608.	2.6	49
60	Unifying themes in host defence effector polypeptides. Nature Reviews Microbiology, 2007, 5, 727-740.	28.6	175
61	Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1373-1386.	2.6	63
62	A Synthetic Congener Modeled on a Microbicidal Domain of Thrombin- Induced Platelet Microbicidal Protein 1 Recapitulates Staphylocidal Mechanisms of the Native Molecule. Antimicrobial Agents and Chemotherapy, 2006, 50, 3786-3792.	3.2	27
63	Immunocontinuum: Perspectives in Antimicrobial Peptide Mechanisms of Action and Resistance. Protein and Peptide Letters, 2005, 12, 49-67.	0.9	91
64	Functional Interrelationships between Cell Membrane and Cell Wall in Antimicrobial Peptide-Mediated Killing of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2005, 49, 3114-3121.	3.2	113
65	DltABCD- and MprF-Mediated Cell Envelope Modifications of Staphylococcus aureus Confer Resistance to Platelet Microbicidal Proteins and Contribute to Virulence in a Rabbit Endocarditis Model. Infection and Immunity, 2005, 73, 8033-8038.	2.2	148
66	Lack of Wall Teichoic Acids inStaphylococcus aureusLeads to Reduced Interactions with Endothelial Cells and to Attenuated Virulence in a Rabbit Model of Endocarditis. Journal of Infectious Diseases, 2005, 191, 1771-1777.	4.0	207
67	Platelet Microbicidal Protein 1: Structural Themes of a Multifunctional Antimicrobial Peptide. Antimicrobial Agents and Chemotherapy, 2004, 48, 4395-4404.	3.2	65
68	Susceptibility to Thrombin-Induced Platelet Microbicidal Protein Is Associated with Increased Fluconazole Efficacy against Experimental Endocarditis Due to <i>Candida albicans</i> Antimicrobial Agents and Chemotherapy, 2004, 48, 3051-3056.	3.2	20
69	Multidimensional signatures in antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7363-7368.	7.1	335
70	Synthetic Peptides That Exert Antimicrobial Activities in Whole Blood and Blood-Derived Matrices. Antimicrobial Agents and Chemotherapy, 2002, 46, 3883-3891.	3.2	84
71	Antimicrobial peptides from platelets. Drug Resistance Updates, 1999, 2, 116-126.	14.4	76
72	The Role of Platelets in Antimicrobial Host Defense. Clinical Infectious Diseases, 1997, 25, 951-968.	5.8	267

ARTICLE

Treatment of Experimental and Human Bacterial Endocarditis with Quinolone Antimicrobial Agents.,

0, , 259-273.