
Begoña Puértolas Lacambra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6925951/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 2019, 10, 3377.	5.8	261
2	Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations onÂtheÂbio-oil final properties. Microporous and Mesoporous Materials, 2015, 209, 189-196.	2.2	185
3	Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Applied Catalysis B: Environmental, 2013, 132-133, 116-122.	10.8	158
4	Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites. ACS Sustainable Chemistry and Engineering, 2016, 4, 1653-1660.	3.2	126
5	Porosity–Acidity Interplay in Hierarchical ZSMâ€5 Zeolites for Pyrolysis Oil Valorization to Aromatics. ChemSusChem, 2015, 8, 3283-3293.	3.6	105
6	Green Synthesis of Hierarchical Metal–Organic Framework/Wood Functional Composites with Superior Mechanical Properties. Advanced Science, 2020, 7, 1902897.	5.6	99
7	In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review. Catalysis Today, 2015, 248, 115-127.	2.2	95
8	The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure. Chemical Engineering Journal, 2013, 229, 547-558.	6.6	87
9	Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. Angewandte Chemie - International Edition, 2017, 56, 1775-1779.	7.2	78
10	The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93, 395-405.	10.8	62
11	Deoxygenation of bio-oil over solid base catalysts: From model to realistic feeds. Applied Catalysis B: Environmental, 2016, 184, 77-86.	10.8	59
12	Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions. Applied Catalysis B: Environmental, 2014, 154-155, 161-170.	10.8	54
13	On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 2017, 7, 331-342.	2.9	50
14	Enhanced Baseâ€Free Formic Acid Production from CO ₂ on Pd/g ₃ N ₄ by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2859-2869.	3.6	47
15	Tunable Catalytic Performance of Palladium Nanoparticles for H ₂ O ₂ Direct Synthesis via Surface-Bound Ligands. ACS Catalysis, 2020, 10, 5202-5207.	5.5	39
16	Hierarchical NaY Zeolites for Lactic Acid Dehydration to Acrylic Acid. ChemCatChem, 2016, 8, 1507-1514.	1.8	38
17	Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. Angewandte Chemie, 2017, 129, 1801-1805.	1.6	36
18	Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of Catalysis, 2014, 317, 167-175.	3.1	34

#	Article	IF	CITATIONS
19	High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO ₂ Nanodomains in Structure and Activity. ACS Catalysis, 2015, 5, 1078-1086.	5.5	34
20	Sustainable Continuous Flow Valorization of γâ€Valerolactone with Trioxane to αâ€Methyleneâ€Î³â€Valerolactone over Basic Beta Zeolites. ChemSusChem, 2019, 12, 2628-2636.	3.6	34
21	Halogenâ€Dependent Surface Confinement Governs Selective Alkane Functionalization to Olefins. Angewandte Chemie - International Edition, 2019, 58, 5877-5881.	7.2	30
22	CuH-ZSM-5 as Hydrocarbon Trap under Cold Start Conditions. Environmental Science & Technology, 2013, 47, 5851-5857.	4.6	29
23	Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts. Topics in Catalysis, 2017, 60, 1522-1536.	1.3	29
24	Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine. Journal of Hazardous Materials, 2014, 279, 527-536.	6.5	23
25	Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates. Catalysis Letters, 2010, 134, 110-117.	1.4	21
26	Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology, 2012, 86, 127-136.	3.9	21
27	Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions. Adsorption, 2013, 19, 357-365.	1.4	20
28	BETA Zeolite Thin Films Supported on Honeycomb Monoliths with Tunable Properties as Hydrocarbon Traps under Coldâ€ s tart Conditions. ChemSusChem, 2013, 6, 1467-1477.	3.6	20
29	Molecular simulation design of a multisite solid for the abatement of cold start emissions. Chemical Communications, 2012, 48, 6571.	2.2	15
30	Experimental and simulated propene isotherms on porous solids. Applied Surface Science, 2010, 256, 5292-5297.	3.1	14
31	Mechanistic Insights into the Ceria-Catalyzed Synthesis of Carbamates as Polyurethane Precursors. ACS Catalysis, 2019, 9, 7708-7720.	5.5	14
32	Halogen type as a selectivity switch in catalysed alkane oxyhalogenation. Catalysis Science and Technology, 2018, 8, 2231-2243.	2.1	13
33	Platform Chemicals via Zeolite atalyzed Fast Pyrolysis of Glucose. ChemCatChem, 2017, 9, 1579-1582.	1.8	12
34	Understanding the Structure of Cationic Sites in Alkali Metal-Grafted USY Zeolites. Journal of Physical Chemistry C, 2016, 120, 4954-4960.	1.5	11
35	An Activated TiC–SiC Composite for Natural Gas Upgrading via Catalytic Oxyhalogenation. ChemCatChem, 2018, 10, 1282-1290.	1.8	11
36	Cascade Deoxygenation Process Integrating Acid and Base Catalysts for the Efficient Production of Second-Generation Biofuels. ACS Sustainable Chemistry and Engineering, 2019, 7, 18027-18037.	3.2	11

Begoña Puértolas Lacamb

#	Article	IF	CITATIONS
37	Determining Bio-Oil Composition via Chemometric Tools Based on Infrared Spectroscopy. ACS Sustainable Chemistry and Engineering, 2017, 5, 8710-8719.	3.2	10
38	Halogenbedingte OberflÄ g henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen. Angewandte Chemie, 2019, 131, 5935-5940.	1.6	8
39	Modelling the Breakthrough Curves Obtained from the Adsorption of Propene onto Microporous Inorganic Solids. Adsorption Science and Technology, 2010, 28, 761-775.	1.5	7
40	Upscaling Effects on Alkali Metalâ€Grafted Ultrastable Y Zeolite Extrudates for Modeled Catalytic Deoxygenation of Bioâ€oils. ChemCatChem, 2021, 13, 1951-1965.	1.8	7
41	Enhanced Performance of Zirconiumâ€Doped Ceria Catalysts for the Methoxycarbonylation of Anilines. Chemistry - A European Journal, 2020, 26, 16129-16137.	1.7	6
42	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	3.1	4
43	Preparation of highly active phosphated TiO2catalystsviacontinuous sol–gel synthesis in a microreactor. Catalysis Science and Technology, 2019, 9, 4744-4758.	2.1	4
44	Recent Solutions for the Abatement of Hydrocarbon Emissions During the Cold Start of Light Vehicles. Recent Patents on Chemical Engineering, 2011, 4, 36-52.	0.5	3
45	Transformation of titanium carbide into mesoporous titania for catalysed HBr oxidation. Catalysis Science and Technology, 2020, 10, 4072-4083.	2.1	2
46	Metal–Organic Frameworks/Wood Composites: Green Synthesis of Hierarchical Metal–Organic Framework/Wood Functional Composites with Superior Mechanical Properties (Adv. Sci. 7/2020). Advanced Science, 2020, 7, 2070040.	5.6	1
47	Titelbild: Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand (Angew. Chem. 7/2017). Angewandte Chemie, 2017, 129, 1701-1701.	1.6	0
48	Enhanced Base-Free Formic Acid Production from CO2 on Pd/g-C3 N4 by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2841-2841.	3.6	0
49	Titelbild: Halogenbedingte OberflÄ c henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen (Angew. Chem. 18/2019). Angewandte Chemie, 2019, 131, 5829-5829.	1.6	Ο