
Jamie M Bright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6924551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Verification of deterministic solar forecasts. Solar Energy, 2020, 210, 20-37.	2.9	142
2	Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27Âyears. Solar Energy, 2020, 210, 3-19.	2.9	115
3	Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data. Solar Energy, 2015, 115, 229-242.	2.9	108
4	Assessment of rooftop photovoltaic potentials at the urban level using publicly available geodata and image recognition techniques. Solar Energy, 2017, 155, 561-573.	2.9	108
5	Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis. Renewable and Sustainable Energy Reviews, 2019, 111, 550-570.	8.2	103
6	A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews, 2022, 161, 112348.	8.2	80
7	A parametric model for wind turbine power curves incorporating environmental conditions. Renewable Energy, 2020, 157, 754-768.	4.3	78
8	Improved satellite-derived PV power nowcasting using real-time power data from reference PV systems. Solar Energy, 2018, 168, 118-139.	2.9	69
9	A synthetic, spatially decorrelating solar irradiance generator and application to a LV grid model with high PV penetration. Solar Energy, 2017, 147, 83-98.	2.9	65
10	Solcast: Validation of a satellite-derived solar irradiance dataset. Solar Energy, 2019, 189, 435-449.	2.9	61
11	Cloud cover effect of clear-sky index distributions and differences between human and automatic cloud observations. Solar Energy, 2017, 144, 10-21.	2.9	57
12	QCPV: A quality control algorithm for distributed photovoltaic array power output. Solar Energy, 2017, 143, 120-131.	2.9	54
13	Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Applied Energy, 2017, 205, 1216-1230.	5.1	54
14	Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis. Renewable and Sustainable Energy Reviews, 2021, 135, 110087.	8.2	50
15	A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers. Renewable and Sustainable Energy Reviews, 2019, 109, 412-427.	8.2	49
16	Climate-specific and global validation of MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations. Solar Energy, 2019, 183, 594-605.	2.9	45
17	On the search for representative characteristics of PV systems: Data collection and analysis of PV system azimuth, tilt, capacity, yield and shading. Solar Energy, 2018, 173, 1087-1106.	2.9	42
18	Engerer2: Global re-parameterisation, update, and validation of an irradiance separation model at different temporal resolutions. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	41

JAMIE M BRIGHT

#	Article	IF	CITATIONS
19	Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model. Renewable and Sustainable Energy Reviews, 2020, 121, 109706.	8.2	32
20	Projection of power generation between differently-oriented PV systems. Solar Energy, 2016, 136, 153-165.	2.9	31
21	Nonparametric Bayesian-based recognition of solar irradiance conditions: Application to the generation of high temporal resolution synthetic solar irradiance data. Solar Energy, 2019, 182, 462-479.	2.9	31
22	The impact of globally diverse CHI training data: Evaluation through application of a simple Markov chain downscaling methodology. Journal of Renewable and Sustainable Energy, 2019, 11, 023703.	0.8	27
23	irradpy: Python package for MERRA-2 download, extraction and usage for clear-sky irradiance modelling. Solar Energy, 2020, 199, 685-693.	2.9	27
24	Identification of PV system shading using a LiDAR-based solar resource assessment model: An evaluation and cross-validation. Solar Energy, 2018, 159, 157-172.	2.9	26
25	An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data. Advances in Science and Research, 0, 15, 51-62.	1.0	21
26	Verifying operational intra-day solar forecasts from ECMWF and NOAA. Solar Energy, 2022, 236, 743-755.	2.9	20
27	Upscaling PV Power Considering Module Orientations. IEEE Journal of Photovoltaics, 2017, 7, 941-944.	1.5	19
28	Bayesian parameterisation of a regional photovoltaic model – Application to forecasting. Solar Energy, 2019, 188, 760-774.	2.9	14
29	A tuning routine to correct systematic influences in reference PV systems' power outputs. Solar Energy, 2017, 157, 1082-1094.	2.9	13
30	Data article: Distributed PV power data for three cities in Australia. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	13
31	Himawari-8 Enabled Real-Time Distributed Pv Simulations for Distribution Networks. , 2017, , .		12
32	On predictability of solar irradiance. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	12
33	Dirichlet downscaling model for synthetic solar irradiance time series. Journal of Renewable and Sustainable Energy, 2020, 12, 063702.	0.8	11
34	An analytical approach for estimating the global horizontal from the global tilted irradiance. Solar Energy, 2019, 188, 1042-1053.	2.9	10
35	Estimating the spatiotemporal potential of self-consuming photovoltaic energy to charge electric vehicles in rural and urban Nordic areas. Journal of Renewable and Sustainable Energy, 2020, 12, 046301.	0.8	8
36	Regional Nowcasting of the Solar Power Production with PV-Plant Measurements and Satellite Images. , 2011, , .		8

JAMIE M BRIGHT

#	Article	IF	CITATIONS
37	High resolution measurement network of global horizontal and tilted solar irradiance in southern Germany with a new quality control scheme. Solar Energy, 2022, 231, 593-606.	2.9	8
38	Effects of spatial scale of atmospheric reanalysis data on clear-sky surface radiation modeling in tropical climates: A case study for Singapore. Solar Energy, 2022, 241, 525-537.	2.9	8
39	Benchmarks for solar radiation time series forecasting. Renewable Energy, 2022, 191, 747-762.	4.3	6
40	Evaluating different upscaling approaches to derive the actual power of distributed PV systems. , 2017, , \cdot		4
41	Introduction To Synthetic Solar Irradiance. , 2021, , 1-1-1-32.		3
42	Data article: Full disk real-time Himawari-8/9 satellite AHI imagery from JAXA. Journal of Renewable and Sustainable Energy, 0, , .	0.8	2
43	Impact of the nominal and real peak power of PV systems on grid reinforcement. , 2016, , .		1
44	Validation of Synthetic Solar Irradiance Data. , 2021, , 1-44.		1
45	The Future of Synthetic Solar Irradiance. , 2021, , 6-1-6-28.		1
46	Statistical satellite-derived irradiance estimation: A case study in Singapore. , 2021, , .		0