Yancai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6924511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The technology for improving stability of nanosuspensions in drug delivery. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	16
2	Ciprofloxacin nanocrystals and N-acetylcysteine co-solidified powders for pulmonary drug delivery: development and in vitro and in vivo characterization. Journal of Nanoparticle Research, 2022, 24, .	1.9	1
3	A Comparison of Spray-Drying and Freeze-Drying for the Production of Stable Silybin Nanosuspensions. Journal of Nanoscience and Nanotechnology, 2020, 20, 3598-3603.	0.9	12
4	Development and solidification of multifunction stabilizers formulated self-assembled core-shell Deacetyl mycoepoxydience nanosuspensions. Journal of Molecular Liquids, 2020, 312, 113480.	4.9	5
5	Self-microemulsifying delivery system for improving bioavailability of water insoluble drugs. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	14
6	In vitro and in vivo evaluation of poly (acrylic acid) modified mesoporous silica nanoparticles as pH response carrier for β-elemene self-micro emulsifying. International Journal of Pharmaceutics, 2019, 572, 118768.	5.2	11
7	Design, optimization and in vitro-in vivo evaluation of smart nanocaged carrier delivery of multifunctional PEG-chitosan stabilized silybin nanocrystals. International Journal of Biological Macromolecules, 2019, 124, 667-680.	7.5	29
8	Smart nanocarrier based on PEGylated hyaluronic acid for deacetyl mycoepoxydience: High stability with enhanced bioavailability and efficiency. Carbohydrate Polymers, 2019, 203, 356-368.	10.2	35
9	Self-microemulsion Technology for Water-insoluble Drug Delivery. Current Nanoscience, 2019, 15, 576-588.	1.2	7
10	Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. Journal of Microencapsulation, 2018, 35, 241-248.	2.8	42
11	Design and synthesis of a novel multifunctional stabilizer for highly stable dl-tetrahydropalmatine nanosuspensions and in vitro study. Applied Nanoscience (Switzerland), 2018, 8, 1285-1297.	3.1	8
12	Functional and Modified Nanocrystals Technology for Target Drug Delivery. Journal of Nanoscience and Nanotechnology, 2018, 18, 5207-5221.	0.9	17
13	Deacetyl Mycoepoxydience Nanocrystals Dispersible Tablets Formulation and <i>In Vitro</i> Study. Journal of Nanoscience and Nanotechnology, 2018, 18, 3850-3855.	0.9	8
14	Nanocrystals Technology for Transdermal Delivery of Water-Insoluble Drugs. Current Drug Delivery, 2018, 15, 1221-1229.	1.6	16
15	Nanocrystals Technology for Improving Bioavailability of Poorly Soluble Drugs: A Mini-Review. Journal of Nanoscience and Nanotechnology, 2017, 17, 18-28.	0.9	34
16	In vitro and in vivo evaluation of targeting tumor with folate-based amphiphilic multifunctional stabilizer for resveratrol nanosuspensions. Colloids and Surfaces B: Biointerfaces, 2017, 160, 462-472.	5.0	29
17	Safety of nanosuspensions in drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 455-469.	3.3	79
18	Effect of PEGylated chitosan as multifunctional stabilizer for deacetyl mycoepoxydience nanosuspension design and stability evaluation. Carbohydrate Polymers, 2016, 153, 471-481.	10.2	24

YANCAI WANG

#	Article	IF	CITATIONS
19	State of the art of nanocrystals technology for delivery of poorly soluble drugs. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	16
20	Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. International Journal of Pharmaceutics, 2015, 494, 479-489.	5.2	36
21	Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. International Journal of Pharmaceutics, 2015, 495, 738-749.	5.2	112
22	Development and Characterisation of Ursolic Acid Nanocrystals Without Stabiliser Having Improved Dissolution Rate and In Vitro Anticancer Activity. AAPS PharmSciTech, 2014, 15, 11-19.	3.3	37
23	Effects of Nanosuspension Formulations on Transport, Pharmacokinetics, In Vivo Targeting and Efficacy for Poorly Water-soluble Drugs. Current Pharmaceutical Design, 2014, 20, 454-473.	1.9	12
24	Stability of nanosuspensions in drug delivery. Journal of Controlled Release, 2013, 172, 1126-1141.	9.9	339
25	In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. International Journal of Pharmaceutics, 2013, 441, 728-735.	5.2	85
26	In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Letters, 2011, 307, 158-164.	7.2	55
27	Development and in vitro evaluation of deacety mycoepoxydiene nanosuspension. Colloids and Surfaces B: Biointerfaces, 2011, 83, 189-197.	5.0	40
28	<i>In vitro</i> and <i>in vivo</i> evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology, 2010, 21, 155104.	2.6	86