Jean-Paul Motta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6923962/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy. Antioxidants and Redox Signaling, 2022, 36, 211-219.	5.4	58
2	Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. Journal of Crohn's and Colitis, 2021, 15, 787-799.	1.3	19
3	Uropathogenic E. coli induces DNA damage in the bladder. PLoS Pathogens, 2021, 17, e1009310.	4.7	18
4	Epithelial production of elastase is increased in inflammatory bowel disease and causes mucosal inflammation. Mucosal Immunology, 2021, 14, 667-678.	6.0	17
5	A Toxic Friend: Genotoxic and Mutagenic Activity of the Probiotic Strain Escherichia coli Nissle 1917. MSphere, 2021, 6, e0062421.	2.9	41
6	High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis. Scientific Reports, 2021, 11, 18842.	3.3	9
7	Gastrointestinal biofilms in health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 314-334.	17.8	124
8	PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflammatory Bowel Diseases, 2021, 27, S33-S37.	1.9	5
9	Giardia spp. promote the production of antimicrobial peptides and attenuate disease severity induced by attaching and effacing enteropathogens via the induction of the NLRP3 inflammasome. International Journal for Parasitology, 2020, 50, 263-275.	3.1	22
10	Mucosal Thrombin Alters Gut Microbiota Biofilms Structure And Promote Dispersion Of Bacteria With Aggressive Behavior. FASEB Journal, 2020, 34, 1-1.	0.5	0
11	Therapeutic Intervention Targeting Mucosal Thrombin Or Proteaseâ€Activatedâ€Receptor 1 Are Protective Against Colitis. FASEB Journal, 2020, 34, 1-1.	0.5	0
12	Western Diet Increases the Severity of Giardia Infection in Association with Gut Microbiota Dysbiosis. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nature Communications, 2019, 10, 3224.	12.8	39
14	Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron?. Journal of Biomedical Science, 2019, 26, 1.	7.0	204
15	Effects of Western Diet on Giardiasis: A Role for Fatty Acids and Gut Microbiota in the Persistence and Severity of Giardia Infections. FASEB Journal, 2019, 33, 38.3.	0.5	1
16	Hydrogen sulfide: an agent of stability at the microbiome-mucosa interface. American Journal of Physiology - Renal Physiology, 2018, 314, G143-G149.	3.4	85
17	Iron Sequestration in Microbiota Biofilms As A Novel Strategy for Treating Inflammatory Bowel Diseases, 2018, 24, 1493-1502.	1.9	30
18	Interactions of <i>Giardia sp.</i> with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers, 2017, 5, e1274354.	3.2	61

Jean-Paul Motta

#	Article	IF	CITATIONS
19	Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. International Journal for Parasitology, 2017, 47, 311-326.	3.1	125
20	Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut, 2017, 66, 1767-1778.	12.1	101
21	Using murine colitis models to analyze probiotics–host interactions. FEMS Microbiology Reviews, 2017, 41, S49-S70.	8.6	47
22	Cysteine Protease–Dependent Mucous Disruptions and Differential Mucin Gene Expression in Giardia duodenalis Infection. American Journal of Pathology, 2017, 187, 2486-2498.	3.8	60
23	Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS ONE, 2017, 12, e0178647.	2.5	54
24	<i>Giardia duodenalis</i> induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. American Journal of Physiology - Renal Physiology, 2016, 310, G574-G585.	3.4	64
25	Hydrogen Sulfide Protects from Colitis and Restores Intestinal Microbiota Biofilm and Mucus Production. Inflammatory Bowel Diseases, 2015, 21, 1006-1017.	1.9	150
26	Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxiaâ€inducible factorâ€iα. FASEB Journal, 2015, 29, 1591-1602.	0.5	52
27	Giardia duodenalis: New Research Developments in Pathophysiology, Pathogenesis, and Virulence Factors. Current Tropical Medicine Reports, 2015, 2, 110-118.	3.7	39
28	Tu1829 Discovery of an Epithelial Form of Elastase in the Intestine That Participates to Mucosal Inflammation in IBD. Gastroenterology, 2015, 148, S-913-S-914.	1.3	0
29	613 Epithelial Mesotrypsin in IBS: Expression and Function. Gastroenterology, 2015, 148, S-120.	1.3	2
30	Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microbial Cell Factories, 2015, 14, 26.	4.0	103
31	Hydrogen sulphide protects against <scp>NSAID</scp> â€enteropathy through modulation of bile and the microbiota. British Journal of Pharmacology, 2015, 172, 992-1004.	5.4	53
32	Anti-Inflammatory and Cytoprotective Actions of Hydrogen Sulfide: Translation to Therapeutics. Antioxidants and Redox Signaling, 2015, 22, 398-410.	5.4	120
33	Giardia duodenalis Depletes Goblet Cell Mucins and Degrades MUC2, Facilitating Bacterial Translocation. FASEB Journal, 2015, 29, 507.1.	0.5	4
34	Novel Role of the Serine Protease Inhibitor Elafin in Gluten-Related Disorders. American Journal of Gastroenterology, 2014, 109, 748-756.	0.4	56
35	Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue. PLoS ONE, 2014, 9, e109087.	2.5	61
36	Hydrogen sulfide protects from colitis: a possible role in stabilizing gut microbiota (898.3). FASEB Journal, 2014, 28, 898.3.	0.5	1

Jean-Paul Motta

#	Article	IF	CITATIONS
37	LC–MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 932, 123-133.	2.3	172
38	Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology, 2013, 16, 278-283.	5.1	148
39	Sa1793 Mesotrypsin Protease Is Released by Human Epithelium and May Participate in Proteolytic Balance During Intestinal Inflammation. Gastroenterology, 2013, 144, S-307-S-308.	1.3	0
40	Sa1759 Human Intestinal Epithelial Cells Express and Secrete an Elastolytic Protease, Which Could Participate to IBD Damage. Gastroenterology, 2013, 144, S-300.	1.3	0
41	Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950. Applied and Environmental Microbiology, 2013, 79, 7745-7754.	3.1	84
42	Mo1855 Oral Treatment With Elafin-Recombinant Probiotics Improves Visceral Pain and Hypersensitivity in a Model of Irritable Bowel Syndrome (IBS). Gastroenterology, 2012, 142, S-700-S-701.	1.3	0
43	Mo2015 Food-Grade Lactic Acid Bacteria Expressing Elastase Inhibitors Protect From Intestinal Inflammation in Acute and Chronic Models of Colitis in Mice. Gastroenterology, 2012, 142, S-720.	1.3	0
44	Serine Protease Inhibition Reduces Post-Ischemic Granulocyte Recruitment in Mouse Intestine. American Journal of Pathology, 2012, 180, 141-152.	3.8	31
45	Food-Grade Bacteria Expressing Elafin Protect Against Inflammation and Restore Colon Homeostasis. Science Translational Medicine, 2012, 4, 158ra144.	12.4	198
46	Tu1842 Elastolytic Balance in IBD: the Elastase Inhibitor Elafin Prevents Loss of Barrier Function and Cytokines Release by Human Intestinal Epithelial Cells in IBD Conditions. Gastroenterology, 2012, 142, S-859.	1.3	0
47	Modifying the Protease, Antiprotease Pattern by Elafin Overexpression Protects Mice From Colitis. Gastroenterology, 2011, 140, 1272-1282.	1.3	102
48	Elafin Antiprotease Prevents the Development of Colitis in Mice by Inhibiting Two Neutrophil Serine Proteases: Elastase and Proteinase 3. Gastroenterology, 2011, 140, S-518.	1.3	1
49	Mesotrypsin/Trypsin IV Expression and Role of Serine Protease Activity in Response to Pathogenic or Commensal Forms of E. coli. Gastroenterology, 2011, 140, S-637.	1.3	0
50	Increased Proteolytic Activity at Mucosal Surfaces in IBD Patients: A Possible Role for Elafin. Gastroenterology, 2011, 140, S-695.	1.3	2
51	Proteases/Antiproteases in Inflammatory Bowel Diseases. , 2011, , 173-215.		3
52	Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut, 2010, 59, 481-488.	12.1	130
53	Insights into the regulation of the core clock component TOC1 in the green picoeukaryote Ostreococcus. Plant Signaling and Behavior, 2010, 5, 332-335.	2.4	13
54	M1780 Human Intestinal Epithelial Cells: Actors of the Proteolytic Balance of Intestinal Mucosa. Gastroenterology, 2010, 138, S-417-S-418.	1.3	0

#	Article	IF	CITATIONS
55	Clocks in the Green Lineage: Comparative Functional Analysis of the Circadian Architecture of the Picoeukaryote <i>Ostreococcus</i> Â. Plant Cell, 2009, 21, 3436-3449.	6.6	175
56	W1720 Intracellular Pathways Involved in Histamine and Serotonin-Induced Sensitization of Transient Receptor Potential Vanilloid Receptor 4 (TRPV4) in Colonic Sensory Neurons. Gastroenterology, 2009, 136, A-724.	1.3	0