Werner Kunz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6923744/publications.pdf

Version: 2024-02-01

290 papers

12,016 citations

23500 58 h-index 91 g-index

305 all docs

305 docs citations

305 times ranked 10682 citing authors

#	Article	IF	CITATIONS
1	Development of a fully water-dilutable mint concentrate based on a food-approved microemulsion. Food Chemistry, 2022, 372, 131230.	4.2	6
2	Nanoscopic microheterogeneities or pseudo-phase separations in non-conventional liquids. Current Opinion in Colloid and Interface Science, 2022, 57, 101535.	3.4	6
3	Phosphorylated resveratrol as a protein aggregation suppressor <i>in vitro</i> and <i>in vivo</i> RSC Chemical Biology, 2022, 3, 250-260.	2.0	4
4	Revisiting the roles of salinity, temperature and water activity in phase selection during calcium sulfate precipitation. CrystEngComm, 2022, 24, 1529-1536.	1.3	11
5	Isolation and Investigation of Natural Rubber Latex from <i>Taraxacum kok-saghyz </i> with a High Solid Content. ACS Agricultural Science and Technology, 2022, 2, 296-301.	1.0	3
6	Dynamic diffusion and precipitation processes across calcium silicate membranes. Journal of Colloid and Interface Science, 2022, 618, 206-218.	5.0	3
7	Cloud point, auto-coacervation, and nematic ordering of micelles formed by ethylene oxide containing carboxylate surfactants. Journal of Colloid and Interface Science, 2022, 621, 470-488.	5.0	5
8	GrÃ⅓ne Chemie: Mit Gammaâ€Valerolacton lösen. Nachrichten Aus Der Chemie, 2022, 70, 32-34.	0.0	2
9	Physical-chemical and toxicological properties of osmolyte-based cationic surfactants and spontaneously formed low-toxic catanionic vesicles out of them. Journal of Molecular Liquids, 2022, 361, 119549.	2.3	0
10	Uncovering the curcumin solubilization ability of selected natural deep eutectic solvents based on quaternary ammonium compounds. Journal of Molecular Liquids, 2022, 361, 119661.	2.3	16
11	Solubilization and extraction of curcumin from Curcuma Longa using green, sustainable, and food-approved surfactant-free microemulsions. Food Chemistry, 2021, 336, 127660.	4.2	69
12	Curcumin extracts from Curcuma Longa – Improvement of concentration, purity, and stability in food-approved and water-soluble surfactant-free microemulsions. Food Chemistry, 2021, 339, 128140.	4.2	27
13	Stabilisation of biofuels with hydrophilic, natural antioxidants solubilised by glycerol derivatives. Fuel, 2021, 284, 119055.	3.4	15
14	Physical-chemical properties of newly synthesized tetraalkylammonium alkyl ether carboxylate ionic liquids. Journal of Molecular Liquids, 2021, 322, 114947.	2.3	20
15	Self-assembly of a short amphiphile in water controlled by superchaotropic polyoxometalates: H4SiW12O40 vs. H3PW12O40. Journal of Colloid and Interface Science, 2021, 587, 347-357.	5.0	19
16	Salting-in and salting-out effects of short amphiphilic molecules: a balance between specific ion effects and hydrophobicity. Physical Chemistry Chemical Physics, 2021, 23, 1381-1391.	1.3	30
17	Natural deep eutectic solvents: From simple systems to complex colloidal mixtures. Advances in Botanical Research, 2021, , 17-40.	0.5	3
18	Salt effects on liquid-liquid equilibria in the ternary water/n-butanol/HMF system and solvent effects on HMF separation from water. Journal of Molecular Liquids, 2021, 325, 114551.	2.3	5

#	Article	IF	Citations
19	Phase separation of binary mixtures induced by soft centrifugal fields. Physical Chemistry Chemical Physics, 2021, 23, 8261-8272.	1.3	9
20	Hofmeister versus Neuberg: is ATP really a biological hydrotrope?. Cell Reports Physical Science, 2021, 2, 100343.	2.8	40
21	Spontaneous Ouzo Emulsions Coexist with Pre-Ouzo Ultraflexible Microemulsions. Langmuir, 2021, 37, 3817-3827.	1.6	22
22	Verifying the reliability of the steam-jet test on coated thermoplastic olefin substrates by a semi-quantitative peel test. Polymer Testing, 2021, 97, 107145.	2.3	1
23	Phase diagrams and microstructures of aqueous short alkyl chain polyethylene glycol ether carboxylate and carboxylic acid triblock surfactant solutions. Journal of Colloid and Interface Science, 2021, 590, 375-386.	5.0	16
24	Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa. Journal of Molecular Liquids, 2021, 329, 115538.	2.3	13
25	Towards a general understanding of the effects of hydrophobic additives on the viscosity of surfactant solutions. Journal of Molecular Liquids, 2021, 329, 115523.	2.3	15
26	Extraction of curcumin from Curcuma longa using meglumine and pyroglutamic acid, respectively, as solubilizer and hydrotrope. Journal of Molecular Liquids, 2021, 334, 116478.	2.3	7
27	lonic Liquids Based on the Concept of Melting Point Lowering Due to Ethoxylation. Molecules, 2021, 26, 4034.	1.7	4
28	Adsorptive decontamination of antibiotic-spiked water and milk using commercial and modified activated carbons. Journal of Environmental Chemical Engineering, 2021, 9, 105544.	3.3	9
29	SALTING-IN AND SALTING-OUT EFFECTS OF POLYPHENOLS, AROMATIC COMPOUNDS, AND AMINO ACIDS ON POLY (N-ISOPROPYLACRYLAMIDE) AND EGG WHITE AQUEOUS SOLUTIONS. Science and Innovation, 2021, 17, 72-78.	0.2	1
30	Carl Neuberg's hydrotropic appearances (1916). Advances in Colloid and Interface Science, 2021, 294, 102476.	7.0	7
31	Ionic Liquids [M ³⁺][A ^{â^'}] ₃ with Threeâ€Valent Cations and Their Possible Use to Easily Separate Rare Earth Metals. Chemistry - A European Journal, 2021, 27, 13052-13058.	1.7	3
32	NADES-based surfactant-free microemulsions for solubilization and extraction of curcumin from Curcuma Longa. Food Chemistry, 2021, 355, 129624.	4.2	26
33	Tubular Structures of Calcium Carbonate: Formation, Characterization, and Implications in Natural Mineral Environments. Chemistry - A European Journal, 2021, 27, 16135-16144.	1.7	8
34	The green platform molecule gamma-valerolactone â€" ecotoxicity, biodegradability, solvent properties, and potential applications. Green Chemistry, 2021, 23, 2962-2976.	4.6	76
35	Improvement of the Solubilization and Extraction of Curcumin in an Edible Ternary Solvent Mixture. Molecules, 2021, 26, 7702.	1.7	7
36	A general thermodynamic law for multi-phase systems without turbulences in the non-linear regime and its application to separation processes. Fluid Phase Equilibria, 2020, 507, 112436.	1.4	0

#	Article	IF	Citations
37	Optimising the biodiesel production process: Implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels. Fuel, 2020, 264, 116695.	3.4	29
38	Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nature Catalysis, 2020, 3, 40-47.	16.1	148
39	Pre-nucleation cluster formation upon ethyl acetate addition to an aqueous solution of an anionic hydrotrope. Journal of Molecular Liquids, 2020, 310, 113240.	2.3	6
40	Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface. Journal of Physical Chemistry Letters, 2019, 10, 5331-5337.	2.1	6
41	From Petroleum to Bio-Based Solvents: From Academia to Industry. Green Chemistry and Sustainable Technology, 2019, , 51-87.	0.4	4
42	Osmotic coefficients and activity coefficients in binary water/5-(hydroxymethyl)furfural and in ternary water/5-(hydroxymethyl)furfural/salt solutions at 298.15†K. Journal of Chemical Thermodynamics, 2019, 139, 105878.	1.0	4
43	Shedding Light on the Diversity of Surfactant Interactions with Luminol Electrochemiluminescence for Bioanalysis. Analytical Chemistry, 2019, 91, 13080-13087.	3.2	8
44	Understanding and Prediction of the Clouding Phenomenon by Spontaneous and Effective Packing Concepts. Journal of Surfactants and Detergents, 2019, 22, 1011-1021.	1.0	8
45	<i>Ab initio</i> prediction of structuring/mesoscale inhomogeneities in surfactant-free microemulsions and hydrogen-bonding-free microemulsions. Physical Chemistry Chemical Physics, 2019, 21, 8054-8066.	1.3	16
46	Guanidinium Cation Effect on the Water Activity of Ternary (S)Aminopentanedioic Acid Sodium Salt Solutions at 298.15 and 310.15 K. Journal of Chemical & Engineering Data, 2019, 64, 1256-1264.	1.0	2
47	Molecular factors governing the viscosity peak of giant micelles in the presence of salt and fragrances. Journal of Colloid and Interface Science, 2019, 537, 682-693.	5.0	36
48	Thermodynamic Properties of l-Aspartates of Alkali and Alkali-Earth Metals in Aqueous Solutions at 298.15 and 310.15ÅK and Specific Cation Effects on Biomolecule Solvation. Journal of Solution Chemistry, 2018, 47, 727-748.	0.6	2
49	Lignin/Chitin Films and Their Adsorption Characteristics for Heavy Metal lons. ACS Sustainable Chemistry and Engineering, 2018, 6, 6965-6973.	3.2	64
50	Enzyme activity of horseradish peroxidase in surfactant-free microemulsions. Journal of Colloid and Interface Science, 2018, 516, 466-475.	5.0	24
51	Some aspects of green solvents. Comptes Rendus Chimie, 2018, 21, 572-580.	0.2	138
52	Cellulose and chitin composite materials from an ionic liquid and a green co-solvent. Carbohydrate Polymers, 2018, 192, 159-165.	5.1	36
53	Carnitine alkyl ester bromides as novel biosourced ionic liquids, cationic hydrotropes and surfactants. Journal of Colloid and Interface Science, 2018, 511, 165-173.	5.0	19
54	Oligoether carboxylate counterions: An innovative way towards surfactant ionic liquids. Journal of Molecular Liquids, 2018, 251, 61-69.	2.3	17

#	Article	IF	CITATIONS
55	A formulator's cut of the phase prism for optimizing selective metal extraction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 2-8.	2.3	6
56	Surfactant-free microemulsions with cleavable constituents. Journal of Molecular Liquids, 2018, 271, 112-117.	2.3	19
57	New completely renewable biofuels: formulations and engine tests on an unmodified up-to-date diesel engine. Green Chemistry, 2018, 20, 3308-3317.	4.6	7
58	Precipitation and Crystallization Kinetics in Silica Gardens. ChemPhysChem, 2017, 18, 328-328.	1.0	0
59	Investigation of ethanolamine stabilized natural rubber latex from Taraxacum kok-saghyz and from Hevea brasiliensis using zeta-potential and dynamic light scattering measurements. Industrial Crops and Products, 2017, 103, 169-174.	2.5	13
60	The impact of the structuring of hydrotropes in water on the mesoscale solubilisation of a third hydrophobic component. Physical Chemistry Chemical Physics, 2017, 19, 1806-1816.	1.3	53
61	Pre-formulation of biofuels: Kinematic viscosities, low-temperature phase behaviour and nanostructuring of ethanol/"ethanolotropeâ€∤rapeseed oil mixtures. Fuel, 2017, 191, 212-220.	3.4	15
62	A systematic study of the influence of mesoscale structuring on the kinetics of a chemical reaction. Physical Chemistry Chemical Physics, 2017, 19, 23773-23780.	1.3	15
63	Salting-out and salting-in effects of organic compounds and applications of the salting-out effect of Pentasodium phytate in different extraction processes. Journal of Molecular Liquids, 2017, 236, 368-375.	2.3	44
64	Precipitation and Crystallization Kinetics in Silica Gardens. ChemPhysChem, 2017, 18, 338-345.	1.0	15
65	PPh ₄ Cl in aqueous solution – the aggregation behavior of an antagonistic salt. Physical Chemistry Chemical Physics, 2017, 19, 25463-25470.	1.3	10
66	Study of structural changes of water confined in Brij-30 reverse micelles: Revealing influence of ionic additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 98-105.	2.3	5
67	"Bligh and Dyer―and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. International Journal of Molecular Sciences, 2017, 18, 708.	1.8	200
68	Diffusion and precipitation processes in iron-based silica gardens. Physical Chemistry Chemical Physics, 2016, 18, 24850-24858.	1.3	29
69	Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 2016, 428, 102-111.	1.4	39
70	Weak aggregation: State of the art, expectations and open questions. Current Opinion in Colloid and Interface Science, 2016, 22, 113-119.	3.4	24
71	How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4260-4265.	3.3	160
72	Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. Comptes Rendus Chimie, 2016, 19, 754-765.	0.2	57

#	Article	IF	CITATIONS
73	Hydrotropes. Current Opinion in Colloid and Interface Science, 2016, 22, 99-107.	3.4	140
74	Morphologies Observed in Ultraflexible Microemulsions with and without the Presence of a Strong Acid. ACS Central Science, 2016, 2, 467-475.	5.3	37
75	Eco-friendly one pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent. Sustainable Chemistry and Pharmacy, 2016, 4, 40-45.	1.6	12
76	Cation Effect on the Water Activity of Ternary (S)-Aminobutanedioic Acid Magnesium Salt Solutions at 298.15 and 310.15 K. Journal of Chemical & Engineering Data, 2016, 61, 3190-3199.	1.0	10
77	A renaissance of soaps? — How to make clear and stable solutions at neutral pH and room temperature. Advances in Colloid and Interface Science, 2016, 236, 28-42.	7.0	26
78	The hype with ionic liquids as solvents. Chemical Physics Letters, 2016, 661, 6-12.	1.2	121
79	Nanostructuring in ethanol/"ethanolotropeâ€rapeseed oil automotive biofuels. Colloids and Interface Science Communications, 2016, 14, 1-3.	2.0	13
80	Surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC) with UV and MS detection - a novel approach for the separation and ESI-MS detection of neutral compounds. Analytical and Bioanalytical Chemistry, 2016, 408, 8681-8689.	1.9	8
81	Osmotic Coefficients of Two Amino Acid Magnesium Salts at 298.15 and 310.15ÂK. Journal of Solution Chemistry, 2016, 45, 313-324.	0.6	1
82	Influence of additives on the structure of surfactant-free microemulsions. Physical Chemistry Chemical Physics, 2015, 17, 32528-32538.	1.3	34
83	Consistent definitions of "the interface―in surfactant-free micellar aggregates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 222-227.	2.3	27
84	An investigation of the fish diagrams of water or brine/decane or dodecane/propylene glycol ether (C3P1 or C3P2) systems. Journal of Molecular Liquids, 2015, 206, 170-175.	2.3	4
85	Weak Micelle-Like Aggregation in Ternary Liquid Mixtures as Revealed by Conductivity, Surface Tension, and Light Scattering. Journal of Physical Chemistry B, 2015, 119, 9933-9939.	1.2	37
86	Effects of salts and sucrose on the phase behavior of ternary mixtures of water, decane, and mono-ethylene glycol butyl ether. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 19-25.	2.3	6
87	Toward surfactant-free and water-free microemulsions. Journal of Colloid and Interface Science, 2015, 453, 186-193.	5.0	56
88	Anion effect on glutamate solutions at 298.15 and 310.15K as deduced from vapor pressure measurements. Journal of Molecular Liquids, 2015, 205, 119-122.	2.3	3
89	Probing local pH-based precipitation processes in self-assembled silica-carbonate hybrid materials. Nanoscale, 2015, 7, 17434-17440.	2.8	24
90	Nanostructures in clear and homogeneous mixtures of rapeseed oil and ethanol in the presence of green additives. Colloid and Polymer Science, 2015, 293, 3225-3235.	1.0	14

#	Article	IF	Citations
91	Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels. Acta Biomaterialia, 2015, 27, 131-139.	4.1	36
92	Influence of high intensity sweeteners and sugar alcohols on a beverage microemulsion. Journal of Colloid and Interface Science, 2015, 460, 105-112.	5.0	11
93	New insights into the early stages of silica-controlled barium carbonate crystallisation. Nanoscale, 2014, 6, 14939-14949.	2.8	20
94	Effect of choline carboxylate ionic liquids on biological membranes. Colloids and Surfaces B: Biointerfaces, 2014, 123, 575-581.	2.5	44
95	Crystallization of Mixed Alkaline-Earth Carbonates in Silica Solutions at High pH. Crystal Growth and Design, 2014, 14, 6177-6188.	1.4	20
96	Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT. Journal of Chemical Thermodynamics, 2014, 68, 1-12.	1.0	97
97	Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation. RSC Advances, 2014, 4, 2993-3002.	1.7	42
98	Low-melting mixtures based on choline ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 22815-22822.	1.3	80
99	Properties of sugar-based low-melting mixtures. Molecular Physics, 2014, 112, 1241-1245.	0.8	28
100	Emergence of surfactant-free micelles from ternary solutions. Chemical Science, 2014, 5, 2949-2954.	3.7	94
101	Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, \hat{I}^3 -valerolactone and water. Green Chemistry, 2014, 16, 2463-2471.	4.6	52
102	Osmotic Coefficients and Activity Coefficients in Aqueous Aminoethanoic Acid–NaCl Mixtures at 298.15 K. Journal of Chemical & Engineering Data, 2014, 59, 2741-2749.	1.0	4
103	Ex Situ Reconstitution of the Plant Biopolyester Suberin as a Film. Biomacromolecules, 2014, 15, 1806-1813.	2.6	44
104	Highly water dilutable green microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 105-110.	2.3	30
105	Nano-droplet formation in water/ethanol or isopropanol/mosquito repellent formulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 3-9.	2.3	12
106	Specific ion adsorption on alkyl carboxylate surfactant layers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 414-418.	2.3	7
107	Specific Ion Effects, Evidences. , 2014, , 2045-2050.		3
108	lonic Liquids. , 2014, , 1106-1111.		0

#	Article	IF	CITATIONS
109	Activity Coefficients., 2014,, 7-11.		O
110	Effect of bulk pH and supersaturation on the growth behavior of silica biomorphs in alkaline solutions. CrystEngComm, 2013, 15, 43-53.	1.3	19
111	Choline alkylsulfates – New promising green surfactants. Journal of Colloid and Interface Science, 2013, 392, 274-280.	5.0	51
112	The extension of microemulsion regions by combining ethanol with other cosurfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427, 95-100.	2.3	42
113	Highly and Fully Water Dilutable Sustainable Microemulsions with Dibasic Esters as Oil Phase. ACS Sustainable Chemistry and Engineering, 2013, 1, 603-610.	3.2	9
114	Biodegradability and cytotoxicity of choline soaps on human cell lines: effects of chain length and the cation. RSC Advances, 2013, 3, 23347.	1.7	51
115	Microwave assisted extraction of betulin from birch outer bark. RSC Advances, 2013, 3, 21285.	1.7	14
116	Heat capacities and the two-point scaling analysis of short-chain surfactant solutions. Fluid Phase Equilibria, 2013, 358, 78-82.	1.4	6
117	Pharmacokinetics of a self-microemulsifying drug delivery system of tacrolimus. Biomedicine and Pharmacotherapy, 2013, 67, 469-473.	2.5	10
118	Bottom-Up Self-Assembly of Amorphous Core–Shell–Shell Nanoparticles and Biomimetic Crystal Forms in Inorganic Silica–Carbonate Systems. Chemistry of Materials, 2013, 25, 1842-1851.	3.2	25
119	Nanoâ€droplet formation in fragrance tinctures. Flavour and Fragrance Journal, 2013, 28, 294-299.	1.2	40
120	Eco-solvents $\hat{a}\in$ cluster-formation, surfactantless microemulsions and facilitated hydrotropy. Physical Chemistry Chemical Physics, 2013, 15, 10971.	1.3	36
121	Formulation and stability of a soap microemulsion and the apparent pKA herein. Journal of Colloid and Interface Science, 2013, 407, 382-389.	5.0	5
122	Influence of Chain Length and Double Bond on the Aqueous Behavior of Choline Carboxylate Soaps. Langmuir, 2013, 29, 2506-2519.	1.6	17
123	The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study. Nanoscale, 2013, 5, 7054.	2.8	38
124	How specific are ion specificities? A pilot NMR study. Faraday Discussions, 2013, 160, 121-133.	1.6	12
125	Octanol-rich and water-rich domains in dynamic equilibrium in the pre-ouzo region of ternary systems containing a hydrotrope. Journal of Applied Crystallography, 2013, 46, 1665-1669.	1.9	76
126	1-Octylindoline-2,3-dione. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1801-o1801.	0.2	12

#	Article	IF	CITATIONS
127	Activity of Water and Osmotic Coefficients for Two- and Three-Basic Amino Acid Ternary Solutions. Journal of Chemical & Deta, 2012, 57, 3123-3127.	1.0	9
128	Organic reactivity of alcohols in superheated aqueous salt solutions: an overview. New Journal of Chemistry, 2012, 36, 1568.	1.4	11
129	Structure and Solubility in Surfactantâ€Free Microemulsions. ChemPhysChem, 2012, 13, 4116-4119.	1.0	84
130	Microemulsions with renewable feedstock oils. Green Chemistry, 2012, 14, 2017.	4.6	26
131	Amino Acid Solvation in Aqueous Kosmotrope Solutions: Temperature Dependence of the <scp> < scp>-Histidineâ€"Glycerol Interaction. Journal of Physical Chemistry B, 2012, 116, 2325-2329.</scp>	1.2	19
132	Hydrothermal alkylation of phenols with alcohols in diluted acids. Comptes Rendus Chimie, 2012, 15, 96-101.	0.2	9
133	Magnetic microemulsions based on magnetic ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 15355.	1.3	47
134	Using ionic liquids to formulate microemulsions: Current state of affairs. Current Opinion in Colloid and Interface Science, 2012, 17, 205-211.	3.4	73
135	Organic chemistry under hydrothermal conditions. Pure and Applied Chemistry, 2012, 85, 89-103.	0.9	11
136	Effect of Salts on the Phase Behavior and the Stability of Nano-Emulsions with Rapeseed Oil and an Extended Surfactant. Langmuir, 2012, 28, 8318-8328.	1.6	44
137	Evolution and Control of Complex Curved Form in Simple Inorganic Precipitation Systems. Crystal Growth and Design, 2012, 12, 3647-3655.	1.4	18
138	Colloidal Stabilization of Calcium Carbonate Prenucleation Clusters with Silica. Advanced Functional Materials, 2012, 22, 4301-4311.	7.8	103
139	Formation and Evolution of Chemical Gradients and Potential Differences Across Selfâ€Assembling Inorganic Membranes. Angewandte Chemie - International Edition, 2012, 51, 4317-4321.	7.2	54
140	Local autocatalytic co-precipitation phenomena in self-assembled silica–carbonate materials. Journal of Colloid and Interface Science, 2012, 380, 1-7.	5 . 0	26
141	The effect of position and length of alkyl substituents in pyridinium based ionic liquids on temperature dependent transport properties. Electrochimica Acta, 2012, 70, 124-130.	2.6	14
142	Growth Behavior and Kinetics of Selfâ€Assembled Silica–Carbonate Biomorphs. Chemistry - A European Journal, 2012, 18, 2272-2282.	1.7	40
143	Specific Ion Effects in Colloid and Surface Science: A Modified DLVO Approach. Statistical Science and Interdisciplinary Research, 2012, , 1-10.	0.0	5
144	Aqueous phase behaviour of choline carboxylate surfactantsâ€"exceptional variety and extent of cubic phases. Soft Matter, 2011, 7, 6973.	1.2	28

#	Article	IF	Citations
145	Oligoether Carboxylates: Task-Specific Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 8961-8969.	1.2	45
146	Hydrotrope-Induced Inversion of Salt Effects on the Cloud Point of an Extended Surfactant. Langmuir, 2011, 27, 4403-4411.	1.6	47
147	Thermotropic Phase Behavior of Choline Soaps. Journal of Physical Chemistry B, 2011, 115, 3838-3847.	1.2	28
148	Low Toxic Ionic Liquids, Liquid Catanionics, and Ionic Liquid Microemulsions. Journal of Dispersion Science and Technology, 2011, 32, 1694-1699.	1.3	20
149	[emim][etSO ₄] as the Polar Phase in Low-Temperature-Stable Microemulsions. Langmuir, 2011, 27, 1635-1642.	1.6	27
150	Conditions for and characteristics of nonaqueous micellar solutions and microemulsions with ionic liquids. Soft Matter, 2011, 7, 5507.	1.2	65
151	Classification of Organic Solvents Revisited by Using the COSMOâ€RS Approach. Chemistry - A European Journal, 2011, 17, 5155-5164.	1.7	43
152	Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels. Acta Biomaterialia, 2011, 7, 2826-2834.	4.1	65
153	Green synthesis of para-Menthane-3,8-diol from Eucalyptus citriodora: Application for repellent products. Comptes Rendus Chimie, 2011, 14, 629-635.	0.2	21
154	Influence of surfactant amphiphilicity on the phase behavior of IL-based microemulsions. Journal of Colloid and Interface Science, 2011, 362, 423-429.	5.0	16
155	Ionic Liquids in Microemulsions—A Concept To Extend the Conventional Thermal Stability Range of Microemulsions. Chemistry - A European Journal, 2010, 16, 783-786.	1.7	61
156	Ion specificity of the zeta potential of α-alumina, and of the adsorption of p-hydroxybenzoate at the α-alumina–water interface. Journal of Colloid and Interface Science, 2010, 344, 482-491.	5.0	70
157	Ethylammonium nitrate in high temperature stable microemulsions. Journal of Colloid and Interface Science, 2010, 347, 227-232.	5.0	48
158	Specific ion effects in colloidal and biological systems. Current Opinion in Colloid and Interface Science, 2010, 15, 34-39.	3.4	428
159	Stabilization of Amorphous Calcium Carbonate in Inorganic Silica-Rich Environments. Journal of the American Chemical Society, 2010, 132, 17859-17866.	6.6	130
160	The Conductivity of Imidazolium-Based Ionic Liquids from (â°35 to 195) °C. A. Variation of Cation's Alkyl Chain. Journal of Chemical & Engineering Data, 2010, 55, 1768-1773.	1.0	156
161	The Conductivity of Imidazolium-Based Ionic Liquids from (248 to 468) K. B. Variation of the Anion. Journal of Chemical &	1.0	162
162	Phase Behavior of an Extended Surfactant in Water and a Detailed Characterization of the Concentrated Phases. Langmuir, 2010, 26, 16871-16883.	1.6	28

#	Article	IF	Citations
163	Phase Behavior of an Extended Surfactant in Water and a Detailed Characterization of the Dilute and Semidilute Phases. Langmuir, 2010, 26, 5435-5443.	1.6	22
164	Correlation between polarity parameters and dielectric properties of [Na][TOTO]â€"a sodium ionic liquid. Physical Chemistry Chemical Physics, 2010, 12, 14341.	1.3	48
165	Biodiesel, a sustainable oil, in high temperature stable microemulsions containing a room temperature ionic liquid as polar phase. Energy and Environmental Science, 2010, 3, 846.	15.6	26
166	Beyond Biomineralization. Science, 2009, 323, 344-345.	6.0	46
167	Chapter 6 Saltâ€Induced Morphological Transitions in Nonequimolar Catanionic Systems. Behavior Research Methods, 2009, , 135-162.	2.3	1
168	Alkali Metal Oligoether Carboxylatesâ€"A New Class of Ionic Liquids. Chemistry - A European Journal, 2009, 15, 1341-1345.	1.7	51
169	Repellent studies with <i>Aedes aegypti </i> mosquitoes and human olfactory tests on 19 essential oils from Corsica, France. Flavour and Fragrance Journal, 2009, 24, 160-169.	1.2	30
170	Effective Insect Repellent Formulation in both Surfactantless and Classical Microemulsions with a Longâ€Lasting Protection for Human Beings. Chemistry and Biodiversity, 2009, 6, 934-947.	1.0	38
171	Hofmeister series and specific interactions of charged headgroups with aqueous ions. Advances in Colloid and Interface Science, 2009, 146, 42-47.	7.0	378
172	Additive-induced morphological tuning of self-assembled silica–barium carbonate crystal aggregates. Journal of Crystal Growth, 2009, 311, 2530-2541.	0.7	29
173	Solubilisation of stearic acid by the organic base choline hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 129-134.	2.3	54
174	Influence of additives and cation chain length on the kinetic stability of supersaturated catanionic systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 135-141.	2.3	11
175	lon specific forces between charged self-assembled monolayers explained by modified DLVO theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 11-15.	2.3	11
176	Determining the cytotoxicity of catanionic surfactant mixtures on HeLa cells. Colloids and Surfaces B: Biointerfaces, 2009, 70, 278-280.	2.5	72
177	Anion specificity influencing morphology in catanionic surfactant mixtures with an excess of cationic surfactant. Comptes Rendus Chimie, 2009, 12, 30-37.	0.2	22
178	Correspondence between Curvature, Packing Parameter, and Hydrophilicâ-'Lipophilic Deviation Scales around the Phase-Inversion Temperature. Langmuir, 2009, 25, 112-115.	1.6	79
179	Catanionic Micelles As a Model to Mimic Biological Membranes in the Presence of Anesthetic Alcohols. Langmuir, 2009, 25, 12516-12521.	1.6	21
180	An Attempt of a General Overview. , 2009, , 3-54.		5

#	Article	lF	CITATIONS
181	An Attempt of a Summary. , 2009, , 313-319.		1
182	Hollow SiO2 Microspheres Produced by Coating Yeast Cells. Crystal Growth and Design, 2009, 9, 2318-2323.	1.4	25
183	Microemulsions with an Ionic Liquid Surfactant and Room Temperature Ionic Liquids As Polar Pseudo-Phase. Journal of Physical Chemistry B, 2009, 113, 465-473.	1.2	125
184	lon-specific thermodynamics of multicomponent electrolytes: A hybrid HNC/MD approach. Journal of Chemical Physics, 2009, 131, 154109.	1.2	41
185	Specific Ion Effects., 2009, , .		89
186	Isobaric vapour–liquid equilibria of binary 1-propoxy-2-propanol mixtures with water and alcohols at reduced pressure. Fluid Phase Equilibria, 2008, 272, 84-92.	1.4	29
187	Activity of Water and Osmotic Coefficients of Histidine Derivatives in Aqueous Solutions at 310.15 K. Journal of Solution Chemistry, 2008, 37, 421-431.	0.6	3
188	Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition. Journal of Colloid and Interface Science, 2008, 319, 542-548.	5.0	122
189	Blastulae aggregates: New intermediate structures in the micelle-to-vesicle transition of catanionic systems. Journal of Colloid and Interface Science, 2008, 320, 360-363.	5.0	19
190	Title is missing!. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 1.	2.3	1
191	Forces between air-bubbles in electrolyte solution. Chemical Physics Letters, 2008, 458, 299-302.	1.2	8
192	Description of dilution enthalpies and heat capacities for aqueous solutions within the MSA–NRTL model with ion solvation. Fluid Phase Equilibria, 2008, 264, 211-219.	1.4	9
193	Properties of a new hydrotrope hydrophobic molecule and its potential applications. International Journal of Cosmetic Science, 2008, 30, 347-351.	1.2	5
194	Controlled preparation of hollow zinc oxide microspheres from aqueous solution using hexamethylenetetramine and cysteine. Materials Research Bulletin, 2008, 43, 62-67.	2.7	10
195	Choline carboxylate surfactants: biocompatible and highly soluble in water. Green Chemistry, 2008, 10, 433.	4.6	111
196	Spontaneous Formation of Bilayers and Vesicles in Mixtures of Single-Chain Alkyl Carboxylates: Effect of pH and Aging and Cytotoxicity Studies. Langmuir, 2008, 24, 9983-9988.	1.6	36
197	Co-lon and lon Competition Effects:  Ion Distributions Close to a Hydrophobic Solid Surface in Mixed Electrolyte Solutions. Langmuir, 2008, 24, 3944-3948.	1.6	25
198	Spectroscopic Studies of Catanionic Reverse Microemulsion: Correlation with the Superactivity of Horseradish Peroxidase Enzyme in a Restricted Environment. Journal of Physical Chemistry B, 2008, 112, 6620-6628.	1.2	62

#	Article	IF	CITATIONS
199	Molecular Hydrophobic Attraction and Ion-Specific Effects Studied by Molecular Dynamics. Langmuir, 2008, 24, 1271-1283.	1.6	61
200	Inorganic Self-Organized Silica Aragonite Biomorphic Composites. Crystal Growth and Design, 2008, 8, 1515-1521.	1.4	50
201	Specific Ion Adsorption and Surface Forces in Colloid Science. Journal of Physical Chemistry B, 2008, 112, 1580-1585.	1.2	48
202	Initiation of Vateriteâ^'Aragonite CaCO3 Particles from Silicateâ^'Casein Sols. Journal of Physical Chemistry C, 2008, 112, 17499-17506.	1.5	6
203	Specific Anion and Cation Binding to Lipid Membranes Investigated on a Solid Supported Membrane. Langmuir, 2007, 23, 10074-10080.	1.6	104
204	Mineralization of CaCO3 in the Presence of Egg White Lysozyme. Langmuir, 2007, 23, 12269-12274.	1.6	47
205	Thermophysical and bionotox properties of solvo-surfactants based on ethylene oxide, propylene oxide and glycerol. Green Chemistry, 2007, 9, 491.	4.6	22
206	Specific Alkali Cation Effects in the Transition from Micelles to Vesicles through Salt Addition. Langmuir, 2007, 23, 2376-2381.	1.6	113
207	Propensity of Formate, Acetate, Benzoate, and Phenolate for the Aqueous Solution/Vapor Interface: Surface Tension Measurements and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2007, 111, 8242-8247.	1.5	59
208	Chiral Polymer Helices with Shape Identical to Previously Reported Helical Calcium Carbonate Morphologies. Macromolecular Rapid Communications, 2007, 28, 1024-1028.	2.0	11
209	Aggregates in mixtures of ionic liquids. Journal of Molecular Liquids, 2007, 130, 104-107.	2.3	123
210	Solubilization of methacrylic acid based polymers by surfactants in acidic solutions. Journal of Colloid and Interface Science, 2007, 315, 445-455.	5.0	3
211	Co-precipitation of silica and alkaline-earth carbonates using TEOS as silica source. Journal of Crystal Growth, 2007, 306, 152-158.	0.7	46
212	Water Activity and Osmotic Coefficients in Solutions of Glycine, Glutamic Acid, Histidine and their Salts at 298.15 K and 310.15ÂK. Journal of Solution Chemistry, 2007, 36, 651-672.	0.6	55
213	Specific Ion Effects at Protein Surfaces:Â A Molecular Dynamics Study of Bovine Pancreatic Trypsin Inhibitor and Horseradish Peroxidase in Selected Salt Solutions. Journal of Physical Chemistry B, 2006, 110, 7036-7043.	1.2	139
214	Similarity of Salt Influences on the pH of Buffers, Polyelectrolytes, and Proteins. Journal of Physical Chemistry B, 2006, 110, 8870-8876.	1.2	32
215	Vapor Pressure Determination of the Aliphatic C5to C81-Alcohols. Journal of Chemical & Camp; Engineering Data, 2006, 51, 7-10.	1.0	19
216	Propensity for the Air/Water Interface and Ion Pairing in Magnesium Acetate vs Magnesium Nitrate Solutions:Â Molecular Dynamics Simulations and Surface Tension Measurements. Journal of Physical Chemistry B, 2006, 110, 15939-15944.	1,2	86

#	Article	IF	Citations
217	Short chain glycerol 1-monoethers—a new class of green solvo-surfactants. Green Chemistry, 2006, 8, 822-830.	4.6	77
218	Densities, Ultrasonic Velocities, Viscosities, and Electrical Conductivities of Aqueous Solutions of Mg(OAc)2and Mg(NO3)2. Journal of Chemical & Engineering Data, 2006, 51, 1609-1616.	1.0	20
219	Inclusion of Ionic Hydration and Association in the MSA-NRTL Model for a Description of the Thermodynamic Properties of Aqueous Ionic Solutions:Â Application to Solutions of Associating Acids. Industrial & Description of Chemistry Research, 2006, 45, 4345-4354.	1.8	33
220	Effects of Nonionic Surfactant C12E5 on the Cooperative Dynamics of Water. Langmuir, 2006, 22, 924-932.	1.6	63
221	New Anisotropic Ceramic Membranes from Chemically Fixed Dissipative Structures. Langmuir, 2006, 22, 11353-11359.	1.6	20
222	Modelling of the thermodynamic properties of ionic solutions using a stepwise solvation-equilibrium model. Fluid Phase Equilibria, 2006, 242, 176-188.	1.4	18
223	Ternary systems of nonionic surfactant Brij 35, water and various simple alcohols: Structural investigations by small-angle X-ray scattering and dynamic light scattering. Journal of Colloid and Interface Science, 2006, 294, 194-211.	5.0	70
224	Hofmeister specific-ion effects on enzyme activity and buffer pH: Horseradish peroxidase in citrate buffer. Journal of Molecular Liquids, 2006, 123, 14-19.	2.3	93
225	Biocatalysis using lipase encapsulated in microemulsion-based organogels in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 36, 182-193.	1.6	46
226	The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials, 2006, 27, 3560-9.	5.7	285
227	Reversible Formation of Polymeric Chains by Coordination of Pentaphosphaferrocene with Silver(I) Cations. Angewandte Chemie - International Edition, 2006, 45, 5689-5693.	7.2	104
228	Spontaneous Vesicle Formation of an Industrial Single-Chain Surfactant at Acidic pH and at Room-Temperature. ChemPhysChem, 2006, 7, 1892-1896.	1.0	33
229	Specific ion effects in liquids, in biological systems, and at interfaces. Pure and Applied Chemistry, 2006, 78, 1611-1617.	0.9	60
230	The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities. Journal of Colloid and Interface Science, 2005, 292, 244-254.	5.0	29
231	Dielectric spectroscopy of micelle hydration and dynamics in aqueous ionic surfactant solutions. Journal of Molecular Liquids, 2005, 118, 179-187.	2.3	93
232	Dielectric relaxation spectroscopy of aqueous amino acid solutions: dynamics and interactions in aqueous glycine. Journal of Molecular Liquids, 2005, 117, 93-98.	2.3	66
233	Effect of short non-ionic amphiphiles derived from ethylene and propylene glycol alkyl ethers on the CMC of SDS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 8-12.	2.3	12
234	Vapor Pressures and Osmotic Coefficients of Aqueous LiOH Solutions at Temperatures Ranging from 298.15 to 363.15 K. Industrial & Engineering Chemistry Research, 2005, 44, 3807-3814.	1.8	30

#	Article	IF	CITATIONS
235	Percolating Microemulsions of Nonionic Surfactants Probed by Dielectric Spectroscopy. ChemPhysChem, 2005, 6, 1051-1055.	1.0	15
236	Thermodynamic properties of (LiCl+N,N-dimethylacetamide) and (LiBr+N,N-dimethylacetamide) at temperatures from (323.15 to 423.15) K. Journal of Chemical Thermodynamics, 2005, 37, 331-341.	1.0	9
237	Vapor Pressures, Osmotic and Activity Coefficients of Electrolytes in Protic Solvents at Different Temperatures. 3. Lithium Bromide in 2-Propanol. Journal of Solution Chemistry, 2005, 34, 9-24.	0.6	27
238	Vapor Pressures of Propylene Carbonate and N, N-Dimethylacetamide. Journal of Chemical & amp; Engineering Data, 2005, 50, 26-28.	1.0	38
239	Ultrasonic Velocities, Densities, Viscosities, Electrical Conductivities, Raman Spectra, and Molecular Dynamics Simulations of Aqueous Solutions of Mg(OAc)2and Mg(NO3)2:Â Hofmeister Effects and Ion Pair Formation. Journal of Physical Chemistry B, 2005, 109, 24108-24120.	1.2	61
240	Hofmeister Effects in Surface Tension of Aqueous Electrolyte Solution. Langmuir, 2005, 21, 2619-2623.	1.6	156
241	Design of Low-Toxic and Temperature-Sensitive Anionic Microemulsions Using Short Propyleneglycol Alkyl Ethers as Cosurfactants. Langmuir, 2005, 21, 8138-8145.	1.6	18
242	Hofmeister Effects in Biology:  Effect of Choline Addition on the Salt-Induced Super Activity of Horseradish Peroxidase and Its Implication for Salt Resistance of Plants. Journal of Physical Chemistry B, 2005, 109, 16511-16514.	1.2	71
243	Relation between Dielectric and Low-Frequency Raman Spectra of Hydrogen-Bond Liquids. Physical Review Letters, 2005, 95, 197802.	2.9	291
244	Horseradish Peroxidase Activity in a Reverse Catanionic Microemulsion. Langmuir, 2005, 21, 5259-5262.	1.6	42
245	Is There an Anionic Hofmeister Effect on Water Dynamics? Dielectric Spectroscopy of Aqueous Solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. Journal of Physical Chemistry A, 2005, 109, 8675-8683.	1.1	155
246	Unified Concept of Solubilization in Water by Hydrotropes and Cosolvents. Langmuir, 2005, 21, 6769-6775.	1.6	135
247	Vapor Pressures, Osmotic and Activity Coefficients of Electrolytes in Protic Solvents at Different Temperatures. 1. Lithium Bromide in Methanol. Journal of Solution Chemistry, 2004, 33, 227-245.	0.6	23
248	Vapor pressures, osmotic and activity coefficients for (LiBr+acetonitrile) between the temperatures (298.15 and 343.15) K. Journal of Chemical Thermodynamics, 2004, 36, 511-517.	1.0	38
249	Hofmeister effect on enzymatic catalysis and colloidal structures. Current Opinion in Colloid and Interface Science, 2004, 9, 43-47.	3.4	82
250	Vapor Pressures, Osmotic and Activity Coefficients of Electrolytes in Protic Solvents at Different Temperatures. 2. Lithium Bromide in Ethanol. Journal of Solution Chemistry, 2004, 33, 1429-1446.	0.6	28
251	A Porphyrin Dye with Monoexponential Fluorescence Intensity and Anisotropy Decay Behavior in Spherical Micelles. Angewandte Chemie - International Edition, 2004, 43, 634-636.	7.2	5
252	Temperature dependence of industrial propylene glycol alkyl ether/water mixtures. Journal of Molecular Liquids, 2004, 115, 23-28.	2.3	37

#	Article	IF	CITATIONS
253	New approaches to the calculation of thermodynamic properties of electrolyte solutions. Journal of Molecular Liquids, 2004, 113, 5-8.	2.3	5
254	Automated apparatus for the rapid determination of liquid–liquid and solid–liquid phase transitions. Fluid Phase Equilibria, 2004, 216, 175-182.	1.4	22
255	Role of polarizability in molecular interactions in ion solvation. Current Opinion in Colloid and Interface Science, 2004, 9, 92-96.	3.4	22
256	Effect of the Chain Length on the Inter- and Intramolecular Dynamics of Liquid Oligo(ethylene) Tj ETQq0 0 0 rgB	T /Overloo	k 10 Tf 50 62
257	Adsorption Pattern of Mixtures of Trimethylammonium-Modified Hydroxyethylcellulose and Sodium Dodecyl Sulfate at Solidâ^'Liquid Interfaces. Langmuir, 2004, 20, 2282-2291.	1.6	24
258	Nonionic Surfactant Brij 35 in Water and in Various Simple Alcohols:Â Structural Investigations by Small-Angle X-ray Scattering and Dynamic Light Scattering. Journal of Physical Chemistry B, 2004, 108, 7021-7032.	1.2	82
259	Reply to Comment on the "Osmotic Coefficients and Surface Tensions of Aqueous Electrolyte Solutions: Role of Dispersion Forcesâ€, Journal of Physical Chemistry B, 2004, 108, 20482-20482.	1.2	0
260	Adsorption and Desorption of Polymer/Surfactant Mixtures at Solidâ-'Liquid Interfaces:Â Substitution Experiments. Langmuir, 2004, 20, 8114-8123.	1.6	26
261	Osmotic Coefficients and Surface Tensions of Aqueous Electrolyte Solutions:  Role of Dispersion Forces. Journal of Physical Chemistry B, 2004, 108, 2398-2404.	1.2	149
262	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures:  Apparatus for Use over an Extended Temperature Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Some New Data. Journal of Chemical & Different Range and Data. Journal of Chemical & Data. Journal of	1.0	60
263	Hofmeister Ion Effects on the Phase Diagrams of Water-Propylene Glycol Propyl Ethers. Zeitschrift Fur Physikalische Chemie, 2004, 218, 631-641.	1.4	26
264	Micelle and Solvent Relaxation in Aqueous Sodium Dodecylsulfate Solutions. ChemPhysChem, 2003, 4, 1065-1072.	1.0	53
265	Biooxidation ofn-hexanol by alcohol oxidase and catalase in biphasic and micellar systems without solvent. Biotechnology and Bioengineering, 2003, 81, 27-32.	1.7	20
266	Description of Vaporâ^'Liquid Equilibria for CO2in Electrolyte Solutions Using the Mean Spherical Approximation. Journal of Physical Chemistry B, 2003, 107, 5948-5957.	1.2	9
267	Light, Neutron, X-ray Scattering, and Conductivity Measurements on Aqueous Dodecyltrimethylammonium Bromide/1-Hexanol Solutions. Journal of Physical Chemistry B, 2003, 107, 13862-13870.	1.2	17
268	Vapor Pressures and Osmotic Coefficients of Aqueous Solutions of SDS, C6TAB, and C8TAB at 25 \hat{A}° C. Langmuir, 2003, 19, 8226-8229.	1.6	42
269	The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Physical Chemistry Chemical Physics, 2003, 5, 1842-1847.	1.3	60
270	Synthesis and Electrochemical Properties of Some Lithium Chelatophosphates. Journal of the Electrochemical Society, 2003, 150, A994.	1.3	22

#	Article	IF	CITATIONS
271	MSA-NRTL model for the description of the thermodynamic properties of electrolyte solutions. Physical Chemistry Chemical Physics, 2002, 4, 4435-4443.	1.3	52
272	Horse Liver Alcohol Dehydrogenase as a Probe for Nanostructuring Effects of Alcohols in Water/Nonionic Surfactant Systems. Journal of Physical Chemistry B, 2002, 106, 7414-7421.	1.2	18
273	Electrical conductivity of reverse micelles in supercritical carbon dioxide. Physical Chemistry Chemical Physics, 2002, 4, 1921-1927.	1.3	11
274	Title is missing!. Biotechnology Letters, 2002, 24, 1951-1955.	1.1	15
275	Inert Phosphorescent Nanospheres as Markers for Optical Assays. Bioconjugate Chemistry, 2001, 12, 883-889.	1.8	58
276	Dielectric Relaxation of Cationic Surfactants in Aqueous Solution. 2. Solute Relaxation. Journal of Physical Chemistry B, 2001, 105, 2914-2922.	1.2	65
277	Dielectric Relaxation of Cationic Surfactants in Aqueous Solution. 1. Solvent Relaxation. Journal of Physical Chemistry B, 2001, 105, 2906-2913.	1.2	88
278	Small angle neutron scattering of D2O–Brij 35 and D2O–alcohol–Brij 35 solutions and their modelling using the Percus–Yevick integral equation. Physical Chemistry Chemical Physics, 1999, 1, 3321-3329.	1.3	48
279	Comment on   Integral equation theory for charged liquids: The structure of macroions in solution and the inversion of experimental data'' [J. Chem. Phys. 100, 2244 (1994)]. Journal of Chemical Physics, 1995, 102, 3486-3486.	1.2	1
280	Conductance in Associated Electrolytes Using the Mean Spherical Approximation. The Journal of Physical Chemistry, 1995, 99, 822-827.	2.9	82
281	Small hydrophobic organic ions in aqueous solutions. Journal of Chemical Physics, 1993, 99, 2074-2078.	1.2	16
282	Transport of cryptates as model brownons: electrical mobilities and self-diffusion coefficients of monovalent and divalent ions cryptated by 222 in aqueous solutions. The Journal of Physical Chemistry, 1993, 97, 5136-5140.	2.9	12
283	Cryptates as model Brownons. Molecular Physics, 1993, 80, 833-841.	0.8	10
284	Transport in electrolytes using the mean spherical approximation: Electrical conductance and self-diffusion coefficient as a function of concentration in solutions. Lecture Notes in Physics, 1993, , 187-197.	0.3	0
285	Conductance in electrolyte solutions using the mean spherical approximation. The Journal of Physical Chemistry, 1992, 96, 3833-3840.	2.9	116
286	Self-diffusion in electrolyte solutions using the mean spherical approximation. The Journal of Physical Chemistry, 1992, 96, 398-403.	2.9	62
287	Structure and Dynamics of Nonaqueous Electrolyte Solutions by Small Angle Neutron Scattering, Brownian Dynamics and Primitive Model Theories. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 321-325.	0.9	1
288	Modern techniques for the study of electrolyte solutions. Annales De Physique, 1990, 15, 447-491.	0.2	13

#	Article	IF	CITATIONS
289	Newly synthesized lonic Liquids as potent lubricants and additives to existing lubricant oils. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 0, , 135065012110601.	1.0	2
290	Comment on "Impact of Conventional and Sustainable Solvents on the Yield, Selectivity, and Recovery of Curcuminoids from Turmeric― ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1