
Tetsuhiko Teshima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6923298/publications.pdf Version: 2024-02-01

TETSUHIKO TESHIMA

#	Article	IF	CITATIONS
1	Three-dimensional self-folding assembly of multi-layer graphene at the interface with a polymeric film. AIP Advances, 2022, 12, 075002.	1.3	1
2	A Superabsorbent Sodium Polyacrylate Printing Resin as Actuator Material in 4D Printing. Macromolecular Materials and Engineering, 2022, 307, .	3.6	5
3	Biocompatible, Flexible, and Oxygen-Permeable Silicone-Hydrogel Material for Stereolithographic Printing of Microfluidic Lab-On-A-Chip and Cell-Culture Devices. ACS Applied Polymer Materials, 2021, 3, 243-258.	4.4	15
4	Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies. Journal of Applied Physics, 2021, 129, 210905.	2.5	7
5	3D Printing of Implants Composed of Nanjing Tamasudareâ€Inspired Flexible Shape Transformers. Advanced Materials Technologies, 2021, 6, 2100240.	5.8	4
6	Soft peripheral nerve interface made from carbon nanotubes embedded in silicone. APL Materials, 2020, 8, .	5.1	17
7	Graphene-based neuron encapsulation with controlled axonal outgrowth. Nanoscale, 2019, 11, 13249-13259.	5.6	12
8	Self-Folded Three-Dimensional Graphene with a Tunable Shape and Conductivity. Nano Letters, 2019, 19, 461-470.	9.1	17
9	Fabrication of Graphene Microroll Aptasensor. Sensors and Materials, 2018, 30, 2989.	0.5	2
10	Self-propelled ion gel at air-water interface. Scientific Reports, 2017, 7, 9323.	3.3	14
11	Cell Assembly in Self-foldable Multi-layered Soft Micro-rolls. Scientific Reports, 2017, 7, 17376.	3.3	19
12	Highâ€Resolution Vertical Observation of Intracellular Structure Using Magnetically Responsive Microplates. Small, 2016, 12, 3366-3373.	10.0	7
13	Hydrogel: Mobile Silk Fibroin Electrode for Manipulation and Electrical Stimulation of Adherent Cells (Adv. Funct. Mater. 45/2016). Advanced Functional Materials, 2016, 26, 8150-8150.	14.9	0
14	Neural Cells: Mobile Microplates for Morphological Control and Assembly of Individual Neural Cells (Adv. Healthcare Mater. 4/2016). Advanced Healthcare Materials, 2016, 5, 500-500.	7.6	0
15	Mobile Silk Fibroin Electrode for Manipulation and Electrical Stimulation of Adherent Cells. Advanced Functional Materials, 2016, 26, 8185-8193.	14.9	28
16	Mobile Microplates for Morphological Control and Assembly of Individual Neural Cells. Advanced Healthcare Materials, 2016, 5, 415-420.	7.6	20
17	Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles. Analytical Chemistry, 2016, 88, 1111-1116.	6.5	40
18	Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nature Communications, 2015, 6, 8871.	12.8	136

Τετςυμικό Τεςμιμα

#	Article	IF	CITATIONS
19	Liquid-filled tunable lenticular lens. Journal of Micromechanics and Microengineering, 2015, 25, 035030.	2.6	16
20	Magnetically Responsive Microflaps Reveal Cell Membrane Boundaries from Multiple Angles. Advanced Materials, 2014, 26, 2850-2856.	21.0	13
21	Microflaps: Magnetically Responsive Microflaps Reveal Cell Membrane Boundaries from Multiple Angles (Adv. Mater. 18/2014). Advanced Materials, 2014, 26, 2963-2963.	21.0	0
22	Centrifugal microfluidic system for multistep assay using small amount of various samples. Sensors and Actuators B: Chemical, 2014, 195, 281-286.	7.8	1
23	Parylene Mobile Microplates Integrated with an Enzymatic Release for Handling of Single Adherent Cells. Small, 2014, 10, 912-921.	10.0	24
24	Clustering triple microbeads in a dynamic microarray for timing-controllable bead-based reactions. Microfluidics and Nanofluidics, 2013, 14, 1039-1048.	2.2	12
25	A dynamic microarray device for paired bead-based analysis. Lab on A Chip, 2010, 10, 2443.	6.0	64
26	Dynamic Microarray Devices for the Observation of Paired Different Types of Beads. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 465-470.	0.1	0