David W C Macmillan

List of Publications by Citations

Source: https://exaly.com/author-pdf/692251/david-w-c-macmillan-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 92
 22,939
 58
 97

 papers
 h-index
 g-index

 97
 27,357
 22.7
 7.85

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
92	Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. <i>Chemical Reviews</i> , 2013 , 113, 5322-63	68.1	5576
91	Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. <i>Science</i> , 2008 , 322, 77-80	33.3	1671
90	Photoredox Catalysis in Organic Chemistry. <i>Journal of Organic Chemistry</i> , 2016 , 81, 6898-926	4.2	1478
89	The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 2017, 1,	34.6	1087
88	Dual catalysis. Merging photoredox with nickel catalysis: coupling of ⊞-carboxyl sp⊞carbons with aryl halides. <i>Science</i> , 2014 , 345, 437-40	33.3	1058
87	Discovery of an ⊞-amino C-H arylation reaction using the strategy of accelerated serendipity. <i>Science</i> , 2011 , 334, 1114-7	33.3	691
86	Alcohols as alkylating agents in heteroarene C-H functionalization. <i>Nature</i> , 2015 , 525, 87-90	50.4	455
85	Enantioselective \oplus -benzylation of aldehydes via photoredox organocatalysis. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13600-3	16.4	445
84	Photoredox activation for the direct Erylation of ketones and aldehydes. <i>Science</i> , 2013 , 339, 1593-6	33.3	409
83	Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (H)-pregabalin. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10886-9	16.4	377
82	Decarboxylative arylation of \Box -amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5257-60	16.4	370
81	Native functionality in triple catalytic cross-coupling: sp\(\text{IC-H}\) bonds as latent nucleophiles. <i>Science</i> , 2016 , 352, 1304-8	33.3	369
80	Enantioselective organocatalytic alpha-fluorination of aldehydes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8826-8	16.4	358
79	Switching on elusive organometallic mechanisms with photoredox catalysis. <i>Nature</i> , 2015 , 524, 330-4	50.4	349
78	Enantioselective Decarboxylative Arylation of \Box -Amino Acids via the Merger of Photoredox and Nickel Catalysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1832-5	16.4	349
77	Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science, 2016, 353, 279-83	33.3	335
76	The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis. <i>Nature</i> , 2015 , 519, 74-7	50.4	332

(2017-2015)

75	Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. <i>Journal of the American Chemical Society</i> , 2015 , 137, 624-7	16.4	326
74	O-H hydrogen bonding promotes H-atom transfer from \oplus C-H bonds for C-alkylation of alcohols. <i>Science</i> , 2015 , 349, 1532-6	33.3	299
73	Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8084-7	16.4	297
72	Photoredox ∃-vinylation of ∃-amino acids and N-aryl amines. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11602-5	16.4	295
71	Selective sp C-H alkylation via polarity-match-based cross-coupling. <i>Nature</i> , 2017 , 547, 79-83	50.4	290
70	Metallaphotoredox-catalysed sp(3)-sp(3) cross-coupling of carboxylic acids with alkyl halides. <i>Nature</i> , 2016 , 536, 322-5	50.4	288
69	Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). <i>Science</i> , 2017 , 355, 380-385	33.3	282
68	Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. <i>Science</i> , 2017 , 358, 118	82 ;	7 268
67	Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5654-7	16.4	260
66	Direct arylation of strong aliphatic C-H bonds. <i>Nature</i> , 2018 , 560, 70-75	50.4	250
65	Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of ⊞-Oxo Acids. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7929-33	16.4	229
64	Oxalates as Activating Groups for Alcohols in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by Redox-Neutral Fragment Coupling. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11270-11273	16.4	226
63	A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes. <i>Science</i> , 2018 , 360, 1010-1014	33.3	220
62	A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: direct arylation of benzylic ethers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 626-9	16.4	208
61	Decarboxylative sp C-N coupling via dual copper and photoredox catalysis. <i>Nature</i> , 2018 , 559, 83-88	50.4	197
60	Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. <i>Nature Chemistry</i> , 2018 , 10, 205-211	17.6	185
59	Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11353-11356	16.4	166
58	A General Small-Scale Reactor To Enable Standardization and Acceleration of Photocatalytic Reactions. <i>ACS Central Science</i> , 2017 , 3, 647-653	16.8	148

57	Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp-sp Cross-Coupling of Oxalates with Aryl Halides. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13862-13865	16.4	139
56	Amine ⊞-heteroarylation photoredox catalysis: a homolytic aromatic substitution pathway. <i>Chemical Science</i> , 2014 , 5, 4173-4178	9.4	131
55	Photoredox Catalysis: A Mild, Operationally Simple Approach to the Synthesis of ⊞-Trifluoromethyl Carbonyl Compounds. <i>Angewandte Chemie</i> , 2011 , 123, 6243-6246	3.6	129
54	The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. <i>Organic Process Research and Development</i> , 2019 , 23, 1213-1242	3.9	128
53	Enantioselective — Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from Ecyanoaldehydes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9668-72	16.4	119
52	The merger of decatungstate and copper catalysis to enable aliphatic C(sp)-H trifluoromethylation. <i>Nature Chemistry</i> , 2020 , 12, 459-467	17.6	116
51	Enantioselective Organocatalysis Using SOMO Activation. <i>Science</i> , 2007 , 316, 582-585	33.3	109
50	Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct ⊞-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5369-5373	16.4	107
49	Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6522-6526	16.4	103
48	Direct, enantioselective ∃-alkylation of aldehydes using simple olefins. <i>Nature Chemistry</i> , 2017 , 9, 1073-	·1 <u>07</u> .7	101
47	Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. <i>Chemical Reviews</i> , 2021 ,	68.1	97
46	Metallaphotoredox Difluoromethylation of Aryl Bromides. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12543-12548	16.4	94
45	Fragment Couplings via CO2 Extrusion-Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11938-41	16.4	91
44	Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3488-3492	16.4	87
43	Metallaphotoredox-Catalyzed Cross-Electrophile C-C Coupling of Aliphatic Bromides. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17433-17438	16.4	85
42	Decarboxylative Hydroalkylation of Alkynes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5701-	5 76 .5	82
41	Spin-Center Shift-Enabled Direct Enantioselective <code>\(\pi\)-Benzylation of Aldehydes with Alcohols. \(Journal of the American Chemical Society, \(2018\), 140, 3322-3330</code>	16.4	79
40	Microenvironment mapping via Dexter energy transfer on immune cells. <i>Science</i> , 2020 , 367, 1091-1097	33.3	73

(2020-2019)

39	Copper-Catalyzed Trifluoromethylation of Alkyl Bromides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6853-6858	16.4	71
38	Copper-mediated synthesis of drug-like bicyclopentanes. <i>Nature</i> , 2020 , 580, 220-226	50.4	70
37	Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products. <i>Nature Chemistry</i> , 2017 , 9, 1165-1169	17.6	62
36	Transient Absorption Spectroscopy Offers Mechanistic Insights for an Iridium/Nickel-Catalyzed C-O Coupling. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4555-4559	16.4	60
35	Mechanistic Analysis of Metallaphotoredox C-N Coupling: Photocatalysis Initiates and Perpetuates Ni(I)/Ni(III) Coupling Activity. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15830-15841	16.4	59
34	Cross-Electrophile Coupling of Unactivated Alkyl Chlorides. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11691-11697	16.4	55
33	A Metallaphotoredox Strategy for the Cross-Electrophile Coupling of <code>\(\)-Chloro Carbonyls with Aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 14584-14588</code>	16.4	45
32	Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 3546-3550	3.6	35
31	Metallaphotoredox-enabled deoxygenative arylation of alcohols. <i>Nature</i> , 2021 , 598, 451-456	50.4	35
30	Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. <i>Nature</i> , 2021 , 589, 542-54	7 50.4	34
29	Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct \oplus -Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 5467-5471	3.6	32
28	Static to inducibly dynamic stereocontrol: The convergent use of racemic Bubstituted ketones. <i>Science</i> , 2020 , 369, 1113-1118	33.3	32
27	Open-Shell Fluorination of Alkyl Bromides: Unexpected Selectivity in a Silyl Radical-Mediated Chain Process. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20031-20036	16.4	32
26	Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21260-21266	16.4	29
25	Enantioselective Total Synthesis of (Minovincine in Nine Chemical Steps: An Approach to Ketone Activation in Cascade Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 11479-11482	3.6	21
24	Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. <i>Nature Chemistry</i> , 2021 , 13, 902-908	17.6	21
23	Decatungstate-Catalyzed C()-H Sulfinylation: Rapid Access to Diverse Organosulfur Functionality. Journal of the American Chemical Society, 2021 , 143, 9737-9743	16.4	20
22	Metallaphotoredox Perfluoroalkylation of Organobromides. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19480-19486	16.4	17

21	Metallaphotoredox Difluoromethylation of Aryl Bromides. <i>Angewandte Chemie</i> , 2018 , 130, 12723-1272	8 3.6	16
20	HARC as an open-shell strategy to bypass oxidative addition in Ullmann-Goldberg couplings. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21058-21064	4 ^{11.5}	16
19	A biomimetic S2 cross-coupling mechanism for quaternary sp-carbon formation. <i>Science</i> , 2021 , 374, 125	8;1,36:	3 15
18	A General -alkylation Platform via Copper Metallaphotoredox and Silyl Radical Activation of Alkyl Halides. <i>CheM</i> , 2021 , 7, 1827-1842	16.2	14
17	Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. <i>ACS Central Science</i> , 2021 , 7, 1126-1134	16.8	13
16	A Metallaphotoredox Strategy for the Cross-Electrophile Coupling of ∃-Chloro Carbonyls with Aryl Halides. <i>Angewandte Chemie</i> , 2019 , 131, 14726-14730	3.6	11
15	The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9332-9337	16.4	11
14	Accelerating reaction generality and mechanistic insight through additive mapping <i>Science</i> , 2022 , 376, 532-539	33.3	11
13	Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C()-C() Cross-Coupling via Radical Sorting <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	10
12	Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of to Diols <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	9
11	Decarboxylative Oxygenation via Photoredox Catalysis. Israel Journal of Chemistry, 2020, 60, 410-415	3.4	9
10	Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis. <i>Organic Process Research and Development</i> , 2021 , 25, 1966-1973	3.9	6
9	Small molecule photocatalysis enables drug target identification via energy transfer		6
8	Map-Red: Proximity Labeling by Red Light Photocatalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	6
7	Reactive intermediates for interactome mapping. Chemical Society Reviews, 2021, 50, 2911-2926	58.5	5
6	Asymmetric Organocatalysis 37-117		4
5	Enantioselective Organo-SOMO Catalysis: a Novel Activation Mode for Asymmetric Synthesis 2013 , 87-	94	3
4	Ligand-to-Copper Charge Transfer: A General Catalytic Approach to Aromatic Decarboxylative Function	alizati	oŋ

3 Tracking chromatin state changes using Map photo-proximity labeling

3

Decarboxylative sp3 CN Coupling via Dual Copper/Photoredox Catalysis

2

CarbonCarbon Bond Formation by Metallaphotoredox Catalysis **2019**, 471-546