Zhihong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6922346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic and mechanistic studies of a highly active and <i>E</i> -selective Co(<scp>ii</scp>) PNN ^H pincer catalyst system for transfer-semihydrogenation of internal alkynes. Inorganic Chemistry Frontiers, 2022, 9, 761-770.	6.0	5
2	<i>In Silico</i> Investigation of Ligand-Regulated Palladium-Catalyzed Formic Acid Dehydrative Decomposition under Acidic Conditions. Organometallics, 2022, 41, 246-258.	2.3	3
3	(<i>In situ</i>) spectroscopic studies on state-of-the-art Pd(<scp>ii</scp>) catalysts in solution for the alkoxycarbonylation of alkenes. Catalysis Science and Technology, 2022, 12, 3175-3189.	4.1	5
4	Structure, magnetic properties and spin density of two alternative Mn(<scp>ii</scp>) coordination polymers based on 1,4-bis(2′-carboxyphenoxy)benzene. Dalton Transactions, 2022, 51, 4869-4877.	3.3	4
5	Trimethyloxonium ion – a zeolite confined mobile and efficient methyl carrier at low temperatures: a DFT study coupled with microkinetic analysis. Catalysis Science and Technology, 2022, 12, 3328-3342.	4.1	2
6	Catalytic Performance and Mechanistic Insights into the Synthesis of Polyoxymethylene Dimethyl Ethers from Dimethoxymethane and Trioxymethylene over ZSM-5 Zeolite. Catalysis Letters, 2021, 151, 670-684.	2.6	4
7	A General and Highly Selective Palladium atalyzed Hydroamidation of 1,3â€Diynes. Angewandte Chemie, 2021, 133, 375-383.	2.0	7
8	A General and Highly Selective Palladium atalyzed Hydroamidation of 1,3â€Diynes. Angewandte Chemie - International Edition, 2021, 60, 371-379.	13.8	26
9	Catalytic Activity of Aliphatic PNP Ligated Co ^{III/I} Amine and Amido Complexes in Hydrogenation Reaction—Structure, Stability, and Substrate Dependence. ACS Catalysis, 2021, 11, 4593-4605.	11.2	6
10	Mechanisms of Co ^{II} and Acid Jointly Catalyzed Domino Conversion of CO ₂ , H ₂ , and CH ₃ OH to Dialkoxymethane: A DFT Study. ACS Catalysis, 2021, 11, 6908-6919.	11.2	9
11	Supramolecular-interaction-mediated aggregation of anticarcinogens on triformyl cholic acid-functionalized Fe ₃ O ₄ nanoparticles and their dual-targeting treatment for liver cancer. New Journal of Chemistry, 2021, 45, 6880-6888.	2.8	3
12	Transfer hydrogenation of N-heteroarenes with 2-propanol and ethanol enabled by manganese catalysis. Organic Chemistry Frontiers, 2021, 8, 6901-6908.	4.5	13
13	Unraveling the Relationship between Zeolite Structure and MTO Product Distribution by Theoretical Study of the Reaction Mechanism. Journal of Physical Chemistry C, 2021, 125, 26472-26483.	3.1	9
14	Versatile Fluorinated Building Blocks by Stereoselective (Per)fluoroalkenylation of Ketones. European Journal of Organic Chemistry, 2020, 2020, 70-81.	2.4	8
15	Tuning the Selectivity of Palladium Catalysts for Hydroformylation and Semihydrogenation of Alkynes: Experimental and Mechanistic Studies. ACS Catalysis, 2020, 10, 12167-12181.	11.2	31
16	Insight into the Methylation of Alkenes and Aromatics with Methanol over Zeolite Catalysts by Linear Scaling Relations. Journal of Physical Chemistry C, 2020, 124, 13789-13798.	3.1	11
17	Hydrogen-bond-driven supramolecular self-assembly of diacetylene derivatives for topochemical polymerization in solution. Polymer Chemistry, 2020, 11, 1947-1953.	3.9	13
18	Chemoselective semihydrogenation of alkynes catalyzed by manganese(<scp>i</scp>)-PNP pincer complexes. Catalysis Science and Technology, 2020, 10, 3994-4001.	4.1	43

ZHIHONG WEI

#	Article	IF	CITATIONS
19	Donor–acceptor duality of the transition-metal-like B ₂ core in core–shell-like metallo-borospherenes La ₃ &[B ₂ @B ₁₇] ^{â^`} and La ₃ &[B ₂ @B ₁₈] ^{â^`} . RSC Advances, 2020, 10, 34225-34230.	3.6	12
20	General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chemical Science, 2020, 11, 4332-4339.	7.4	29
21	Iron–PNPâ€Pincer atalyzed Transfer Dehydrogenation of Secondary Alcohols. ChemSusChem, 2019, 12, 2833-2833.	6.8	0
22	Iron–PNPâ€₽incer atalyzed Transfer Dehydrogenation of Secondary Alcohols. ChemSusChem, 2019, 12, 2988-2993.	6.8	14
23	Cobalt atalyzed Aqueous Dehydrogenation of Formic Acid. Chemistry - A European Journal, 2019, 25, 8459-8464.	3.3	54
24	Enantioselective Hydrogenation of Ketones using Different Metal Complexes with a Chiral PNP Pincer Ligand. Advanced Synthesis and Catalysis, 2019, 361, 1913-1920.	4.3	37
25	Manganese PNP-pincer catalyzed isomerization of allylic/homo-allylic alcohols to ketones – activity, selectivity, efficiency. Catalysis Science and Technology, 2019, 9, 6327-6334.	4.1	14
26	Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines. Nature Communications, 2019, 10, 5443.	12.8	57
27	Bifunctional aliphatic PNP pincer catalysts for hydrogenation: Mechanisms and scope. Advances in Inorganic Chemistry, 2019, 73, 323-384.	1.0	13
28	Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles. Nature Communications, 2018, 9, 1465.	12.8	35
29	Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands. Chemical Science, 2018, 9, 2510-2516.	7.4	94
30	Selective Baseâ€free Transfer Hydrogenation of α,βâ€Unsaturated Carbonyl Compounds using <i>i</i> PrOH or EtOH as Hydrogen Source. Chemistry - A European Journal, 2018, 24, 2725-2734.	3.3	34
31	Reaction Mechanism for Direct Cyclization of Linear C ₅ , C ₆ , and C ₇ Alkenes over Hâ€ITQâ€I 3 Zeolite Investigated Using Density Functional Theory. ChemPhysChem, 2018, 19, 496-503.	2.1	18
32	Exploring the activities of vanadium, niobium, and tantalumÂPNP pincer complexes in the hydrogenation of phenyl-substituted CN, CN, CC, CC, and CO functional groups. Comptes Rendus Chimie, 2018, 21, 303-309.	0.5	8
33	Isomerization of Allylic Alcohols to Ketones Catalyzed by Wellâ€Defined Iron PNP Pincer Catalysts. Chemistry - A European Journal, 2018, 24, 4043-4049.	3.3	38
34	Reaction mechanism for the conversion of methanol to olefins over H-ITQ-13 zeolite: a density functional theory study. Catalysis Science and Technology, 2018, 8, 521-533.	4.1	18
35	Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones. ACS Central Science, 2018, 4, 30-38.	11.3	22
36	Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters. Chemistry - A European Journal, 2018, 24, 1046-1052.	3.3	63

ZHIHONG WEI

#	Article	IF	CITATIONS
37	Benyzl Alcohol Dehydrogenative Coupling Catalyzed by Defined Mn and Re PNP Pincer Complexes – A Computational Mechanistic Study. European Journal of Inorganic Chemistry, 2018, 2018, 4643-4657.	2.0	16
38	Exploring the mechanisms of aqueous methanol dehydrogenation catalyzed by defined PNP Mn and Re pincer complexes under base-free as well as strong base conditions. Catalysis Science and Technology, 2018, 8, 3649-3665.	4.1	32
39	Product Distribution Control for Glucosamine Condensation: Nuclear Magnetic Resonance (NMR) Investigation Substantiated by Density Functional Calculations. Industrial & Engineering Chemistry Research, 2017, 56, 2925-2934.	3.7	27
40	Synthesis of Chainlike ZSM-5 Zeolites: Determination of Synthesis Parameters, Mechanism of Chainlike Morphology Formation, and Their Performance in Selective Adsorption of Xylene Isomers. ACS Applied Materials & Interfaces, 2017, 9, 14899-14910.	8.0	39
41	Hydrogenation of phenyl-substituted Cî€,N, Cî€N,Cî€,C, Cî€C and Cî€O functional groups by Cr, Mo and W PNP pincer complexes – a DFT study. Catalysis Science and Technology, 2017, 7, 2298-2307.	4.1	11
42	Manganese(I)â€Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand. Angewandte Chemie - International Edition, 2017, 56, 11237-11241.	13.8	180
43	Manganese(I)â€Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand. Angewandte Chemie, 2017, 129, 11389-11393.	2.0	64
44	Ligand―and Solventâ€Tuned Chemoselective Carbonylation of Bromoaryl Triflates. Chemistry - A European Journal, 2017, 23, 13369-13378.	3.3	32
45	Mechanism of the self-condensation of GlcNH2: insights from in situ NMR spectroscopy and DFT study. Applied Catalysis B: Environmental, 2017, 202, 420-429.	20.2	22
46	Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. Catalysis Science and Technology, 2016, 6, 5526-5533.	4.1	43
47	Kinetics and thermodynamics of polymethylbenzene formation over zeolites with different pore sizes for understanding the mechanisms of methanol to olefin conversion – a computational study. Catalysis Science and Technology, 2016, 6, 5326-5335.	4.1	21
48	Evolution of Aromatic Species in Supercages and Its Effect on the Conversion of Methanol to Olefins over H-MCM-22 Zeolite: A Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 27964-27979.	3.1	24
49	Stability and Reactivity of Intermediates of Methanol Related Reactions and C–C Bond Formation over H-ZSM-5 Acidic Catalyst: A Computational Analysis. Journal of Physical Chemistry C, 2016, 120, 6075-6087.	3.1	50
50	Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. Journal of Physical Chemistry C, 2015, 119, 28482-28498.	3.1	105
51	Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS Catalysis, 2015, 5, 1131-1144.	11.2	72
52	Salicylideneanilines encapsulated mesoporous silica functionalized gold nanoparticles: a low temperature calibrated fluorescent thermometer. RSC Advances, 2015, 5, 77056-77061.	3.6	3
53	Theoretical Insights into the Mechanism of Olefin Elimination in the Methanol-to-Olefin Process over HZSM-5, HMOR, HBEA, and HMCM-22 Zeolites. Journal of Physical Chemistry A, 2014, 118, 8901-8910.	2.5	33
54	A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. Journal of Catalysis, 2014, 317, 277-283.	6.2	151

#	Article	IF	CITATIONS
55	Visualization of the Formation of Interfacially Polymerized Film by an Optical Contact Angle Measuring Device. Journal of Physical Chemistry C, 2012, 116, 11496-11506.	3.1	56
56	Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362, 265-278.	8.2	155