Gaurav Singhal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-Term Environmental Enrichment is a Stronger Modulator of Brain Glial Cells and Cervical Lymph Node T Cell Subtypes than Exercise or Combined Exercise and Enrichment. Cellular and Molecular Neurobiology, 2021, 41, 469-486.	1.7	7
2	Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics, 2021, 30, 393-409.	1.4	32
3	TNF signaling via TNF receptors does not mediate the effects of short-term exercise on cognition, anxiety and depressive-like behaviors in middle-aged mice. Behavioural Brain Research, 2021, 408, 113269.	1.2	0
4	Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behavioural Brain Research, 2020, 383, 112501.	1.2	18
5	Duration of Environmental Enrichment Determines Astrocyte Number and Cervical Lymph Node T Lymphocyte Proportions but Not the Microglial Number in Middle-Aged C57BL/6 Mice. Frontiers in Cellular Neuroscience, 2020, 14, 57.	1.8	9
6	Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 1143-1169.	1.0	17
7	Neuroinflammation and cognition across psychiatric conditions. CNS Spectrums, 2019, 24, 4-15.	0.7	86
8	The effects of short-term and long-term environmental enrichment on locomotion, mood-like behavior, cognition and hippocampal gene expression. Behavioural Brain Research, 2019, 368, 111917.	1.2	26
9	Ceasing exercise induces depression-like, anxiety-like, and impaired cognitive-like behaviours and altered hippocampal gene expression. Brain Research Bulletin, 2019, 148, 118-130.	1.4	19
10	The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice. Behavioural Brain Research, 2018, 337, 193-203.	1.2	61
11	Exercise related anxiety-like behaviours are mediated by TNF receptor signaling, but not depression-like behaviours. Brain Research, 2018, 1695, 10-17.	1.1	13
12	TNF signalling via the TNF receptors mediates the effects of exercise on cognition-like behaviours Behavioural Brain Research, 2018, 353, 74-82.	1.2	19
13	Microglia: An Interface between the Loss of Neuroplasticity and Depression. Frontiers in Cellular Neuroscience, 2017, 11, 270.	1.8	170
14	Cytokine levels in major depression are related to childhood trauma but not to recent stressors. Psychoneuroendocrinology, 2016, 73, 24-31.	1.3	81
15	Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders. Frontiers in Cellular Neuroscience, 2015, 9, 357.	1.8	123
16	Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Frontiers in Cellular Neuroscience, 2014, 8, 97.	1.8	146
17	Inflammasomes in neuroinflammation and changes in brain function: a focused review. Frontiers in Neuroscience, 2014, 8, 315.	1.4	288