Chong Rae Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921951/publications.pdf

Version: 2024-02-01

38742 33894 10,465 147 50 99 citations h-index g-index papers 170 170 170 15672 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chemistry of Materials, 2012, 24, 464-470.	6.7	671
2	Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 2012, 50, 3-33.	10.3	608
3	Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 7394-7397.	13.7	482
4	Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon, 2004, 42, 701-714.	10.3	414
5	Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite. Chemistry of Materials, 2009, 21, 1893-1897.	6.7	336
6	Rational Design of Nanostructured Functional Interlayer/Separator for Advanced Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707411.	14.9	272
7	Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. Journal of Controlled Release, 2003, 91, 135-145.	9.9	266
8	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	10.3	261
9	Structural Characteristics of Size-Controlled Self-Aggregates of Deoxycholic Acid-Modified Chitosan and Their Application as a DNA Delivery Carrier. Bioconjugate Chemistry, 2001, 12, 932-938.	3.6	200
10	Preparation and Solubility in Acid and Water of Partially Deacetylated Chitins. Biomacromolecules, 2000, 1, 609-614.	5.4	199
11	Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel, 2002, 81, 327-336.	6.4	191
12	Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. ACS Nano, 2017, 11, 7608-7614.	14.6	191
13	Hidden Second Oxidation Step of Hummers Method. Chemistry of Materials, 2016, 28, 756-764.	6.7	187
14	Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon, 2015, 91, 178-187.	10.3	183
15	Remarkable Conversion Between n- and p-Type Reduced Graphene Oxide on Varying the Thermal Annealing Temperature. Chemistry of Materials, 2015, 27, 7362-7369.	6.7	177
16	Preparation of Highly Moistureâ€Resistant Blackâ€Colored Metal Organic Frameworks. Advanced Materials, 2012, 24, 4010-4013.	21.0	166
17	Highâ€Performance Thermoelectric Paper Based on Double Carrierâ€Filtering Processes at Nanowire Heterojunctions. Advanced Energy Materials, 2016, 6, 1502181.	19.5	157
18	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	21.0	157

#	Article	IF	CITATIONS
19	Direct spinning and densification method for high-performance carbon nanotube fibers. Nature Communications, 2019, 10, 2962.	12.8	126
20	Advanced energy storage device: a hybrid BatCap system consisting of battery–supercapacitor hybrid electrodes based on Li4Ti5O12–activated-carbon hybrid nanotubes. Journal of Materials Chemistry, 2012, 22, 16986.	6.7	117
21	MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. Journal of Hazardous Materials, 2011, 186, 376-382.	12.4	116
22	Rational design of exfoliated 1T MoS ₂ @CNT-based bifunctional separators for lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23909-23918.	10.3	111
23	Analysis of Problematic Complexing Behavior of Ferric Chloride withN,N-Dimethylformamide Using Combined Techniques of FT-IR, XPS, and TGA/DTG. Inorganic Chemistry, 2002, 41, 6211-6216.	4.0	109
24	Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon, 2001, 39, 559-567.	10.3	106
25	Effect of polymer infiltration on structure and properties of carbon nanotube yarns. Carbon, 2015, 88, 60-69.	10.3	105
26	Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon, 2009, 47, 1585-1591.	10.3	102
27	Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. International Journal of Hydrogen Energy, 2010, 35, 13062-13067.	7.1	100
28	Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. International Journal of Hydrogen Energy, 2011, 36, 12286-12295.	7.1	87
29	High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon, 2017, 118, 413-421.	10.3	83
30	Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. Journal of Materials Chemistry A, 2017, 5, 19116-19125.	10.3	83
31	Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progress in Natural Science: Materials International, 2012, 22, 631-638.	4.4	80
32	Preparation of a freestanding, macroporous reduced graphene oxide film as an efficient and recyclable sorbent for oils and organic solvents. Journal of Materials Chemistry A, 2013, 1, 9427.	10.3	80
33	Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon, 2014, 71, 294-302.	10.3	77
34	Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 819-826.	10.3	76
35	Simple and cost-effective reduction of graphite oxide by sulfuric acid. Carbon, 2012, 50, 3229-3232.	10.3	70
36	Easy Preparation of Self-Assembled High-Density Buckypaper with Enhanced Mechanical Properties. Nano Letters, 2015, 15, 190-197.	9.1	69

#	Article	IF	CITATIONS
37	Highly fluorescent columnar liquid crystals with elliptical molecular shape: oblique molecular stacking and excited-state intramolecular proton-transfer fluorescence. Journal of Materials Chemistry, 2007, 17, 5052.	6.7	67
38	How can we make carbon nanotube yarn stronger?. Composites Science and Technology, 2018, 166, 95-108.	7.8	66
39	Compressional behaviour of carbon fibres. Journal of Materials Science, 1990, 25, 829-834.	3.7	65
40	Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. Journal of Power Sources, 2014, 259, 1-14.	7.8	62
41	Preparation and Exceptional Mechanical Properties of Bone-Mimicking Size-Tuned Graphene Oxide@Carbon Nanotube Hybrid Paper. ACS Nano, 2016, 10, 2184-2192.	14.6	62
42	The effect of heating rate on porosity production during the low temperature reduction of graphite oxide. Carbon, 2013, 53, 73-80.	10.3	59
43	Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macromolecular Research, 2009, 17, 863-869.	2.4	58
44	Water-Soluble Fluorinated and PEGylated Cyanostilbene Derivative: An Amphiphilic Building Block Forming Self-Assembled Organic Nanorods with Enhanced Fluorescence Emission. Chemistry of Materials, 2013, 25, 3288-3295.	6.7	58
45	Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices. Energy and Environmental Science, 2014, 7, 3403-3411.	30.8	58
46	Conjugated Polymer/Photochromophore Binary Nanococktails: Bistable Photoswitching of Nearâ€Infrared Fluorescence for In Vivo Imaging. Advanced Materials, 2013, 25, 5574-5580.	21.0	55
47	Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery–supercapacitor hybrid system. Nanotechnology, 2011, 22, 405402.	2.6	53
48	Easy Preparation of Readily Self-Assembled High-Performance Graphene Oxide Fibers. Chemistry of Materials, 2014, 26, 5549-5555.	6.7	52
49	Band gap engineering of graphene oxide for ultrasensitive NO2 gas sensing. Carbon, 2020, 159, 175-184.	10.3	52
50	Stabilization of Insoluble Discharge Products by Facile Aniline Modification for High Performance Liâ€6 Batteries. Advanced Energy Materials, 2015, 5, 1500268.	19.5	51
51	Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon, 2015, 85, 289-298.	10.3	51
52	General Relationship between Hydrogen Adsorption Capacities at 77 and 298 K and Pore Characteristics of the Porous Adsorbents. Journal of Physical Chemistry C, 2012, 116, 10529-10540.	3.1	50
53	Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries. Electrochimica Acta, 2010, 56, 790-796.	5.2	49
54	Highly dispersible edge-selectively oxidized graphene with improved electrical performance. Nanoscale, 2017, 9, 1699-1708.	5.6	49

#	Article	IF	Citations
55	Effects of sulfuric acid treatment on the microstructure and electrochemical performance of a polyacrylonitrile (PAN)-based carbon anode. Carbon, 2005, 43, 163-169.	10.3	48
56	Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin. Colloid and Polymer Science, 2006, 284, 763-770.	2.1	47
57	High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale, 2016, 8, 18972-18979.	5.6	46
58	Simple fabrication of carbon/TiO ₂ composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B. Nanotechnology, 2012, 23, 035604.	2.6	45
59	Facile preparation of monodisperse ZnO quantum dots with high quality photoluminescence characteristics. Nanotechnology, 2008, 19, 035609.	2.6	44
60	High-performance thermoelectric bracelet based on carbon nanotube ink printed directly onto a flexible cable. Journal of Materials Chemistry A, 2018, 6, 19727-19734.	10.3	44
61	Nanofibril Formation of Electrospun TiO2Fibers and its Application to Dyeâ€Sensitized Solar Cells. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1529-1540.	2.2	43
62	Characteristics tuning of graphene-oxide-based-graphene to various end-uses. Energy Storage Materials, 2018, 14, 8-21.	18.0	43
63	High-Performance, Wearable Thermoelectric Generator Based on a Highly Aligned Carbon Nanotube Sheet. ACS Applied Energy Materials, 2020, 3, 1199-1206.	5.1	43
64	High-Performance Thermoelectric Fabric Based on a Stitched Carbon Nanotube Fiber. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6257-6264.	8.0	43
65	Hydrogen storage on Li-doped single-walled carbon nanotubes: Computer simulation using the density functional theory. Catalysis Today, 2007, 120, 407-412.	4.4	42
66	A simple method for determining the neutralization point in Boehm titration regardless of the CO2 effect. Carbon, 2012, 50, 3315-3323.	10.3	41
67	Preparation and photoluminescence (PL) performance of a nanoweb of P3HT nanofibers with diameters below 100 nm. Journal of Materials Chemistry, 2011, 21, 14231.	6.7	39
68	Quantum Hall effect in graphene decorated with disordered multilayer patches. Applied Physics Letters, 2013, 103, .	3.3	39
69	Preparation and properties of activated carbon fabric from acrylic fabric waste. Carbon, 2000, 38, 1453-1460.	10.3	37
70	Guidelines for Tailored Chemical Functionalization of Graphene. Chemistry of Materials, 2017, 29, 307-318.	6.7	36
71	Preparation and characterization of cisplatin-incorporated chitosan hydrogels, microparticles, and nanoparticles. Macromolecular Research, 2006, 14, 573-578.	2.4	34
72	One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries. Energy Storage Materials, 2016, 5, 1-7.	18.0	34

#	Article	IF	CITATIONS
73	Effects of carbon dioxide and acidic carbon compounds on the analysis of Boehm titration curves. Carbon, 2012, 50, 1510-1516.	10.3	33
74	Rational Design of 1D Partially Graphitized N-Doped Hierarchical Porous Carbon with Uniaxially Packed Carbon Nanotubes for High-Performance Lithium-Ion Batteries. ACS Nano, 2018, 12, 11106-11119.	14.6	33
75	Preparation of poly(ethylene terephthalate-co-isophthalate) by ester interchange reaction in the PET/PEI blend system. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 309-315.	2.1	32
76	Experimental consideration of the Hansen solubility parameters of as-produced multi-walled carbon nanotubes by inverse gas chromatography. Physical Chemistry Chemical Physics, 2014, 16, 17466.	2.8	32
77	Contribution of inorganic components in precursors to porosity evolution in biomass-based porous carbons. Carbon, 2003, 41, 2009-2012.	10.3	31
78	Effects of structural modifications on the hydrogen storage capacity of MOF-5. International Journal of Hydrogen Energy, 2012, 37, 5777-5783.	7.1	31
79	Morphochemical imprinting of melamine cyanurate mesocrystals in glucose-derived carbon for high performance lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 20635-20642.	10.3	31
80	Determination of solubility parameters of single-walled and double-walled carbon nanotubes using a finite-length model. RSC Advances, 2013, 3, 4814.	3.6	30
81	Metal–Phenolic Carbon Nanocomposites for Robust and Flexible Energyâ€Storage Devices. ChemSusChem, 2017, 10, 1675-1682.	6.8	30
82	Controlled assembly of carbon nanotubes encapsulated with amphiphilic block copolymer. Carbon, 2007, 45, 2072-2078.	10.3	28
83	A simple and highly effective process for the purification of single-walled carbon nanotubes synthesized with arc-discharge. Carbon, 2009, 47, 3544-3549.	10.3	28
84	Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. International Journal of Hydrogen Energy, 2016, 41, 5019-5027.	7.1	27
85	Carbon nanosheets by the graphenization of ungraphitizable isotropic pitch molecules. Carbon, 2017, 121, 479-489.	10.3	27
86	Preparation of PCDTBT nanofibers with a diameter of 20 nm and their application to air-processed organic solar cells. Nanoscale, 2014, 6, 2847.	5.6	26
87	Influence of H+ ion irradiation on the surface and microstructural changes of a nuclear graphite. Fusion Engineering and Design, 2012, 87, 344-351.	1.9	25
88	Nanostructured Inorganic Chalcogenide-Carbon Nanotube Yarn having a High Thermoelectric Power Factor at Low Temperature. ACS Nano, 2021, 15, 13118-13128.	14.6	24
89	Ultrafast room-temperature reduction of graphene oxide to graphene with excellent dispersibility by lithium naphthalenide. Carbon, 2013, 63, 165-174.	10.3	23
90	High-Energy Density Li–O ₂ Battery with a Polymer Electrolyte-Coated CNT Electrode via the Layer-by-Layer Method. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17385-17395.	8.0	21

#	Article	IF	Citations
91	Molecular engineering of hydrocarbon membrane to substitute perfluorinated sulfonic acid membrane for proton exchange membrane fuel cell operation. Materials Today Energy, 2020, 17, 100483.	4.7	20
92	Enhanced water stability and CO ₂ gas sorption properties of a methyl functionalized titanium metal–organic framework. New Journal of Chemistry, 2014, 38, 2752-2755.	2.8	19
93	Macroscopically interconnected hierarchically porous carbon monolith by metal-phenolic coordination as an sorbent for multi-scale molecules. Carbon, 2018, 126, 190-196.	10.3	19
94	Highly Integrated, Wearable Carbonâ€Nanotubeâ€Yarnâ€Based Thermoelectric Generators Achieved by Selective Inkjetâ€Printed Chemical Doping. Advanced Energy Materials, 2022, 12, .	19.5	19
95	Concentration-Driven Evolution of Crystal Structure, Pore Characteristics, and Hydrogen Storage Capacity of Metal Organic Framework-5s: Experimental and Computational Studies. Chemistry of Materials, 2010, 22, 6138-6145.	6.7	18
96	Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices. ACS Applied Materials & Devices. ACS Applied Materials & Devices. ACS	8.0	18
97	The effect of surface characteristics of reduced graphene oxide on the performance of a pseudocapacitor. 2D Materials, 2015, 2, 014007.	4.4	18
98	Enhanced gas barrier property of stacking-controlled reduced graphene oxide films for encapsulation of polymer solar cells. Carbon, 2019, 150, 275-283.	10.3	18
99	One-pot titration methodology for the characterization of surface acidic groups on functionalized carbon nanotubes. Carbon, 2016, 96, 729-741.	10.3	17
100	Revisiting the Role of Graphene Quantum Dots in Ternary Organic Solar Cells: Insights into the Nanostructure Reconstruction and Effective Förster Resonance Energy Transfer. ACS Applied Energy Materials, 2019, 2, 8826-8835.	5.1	17
101	New insights into the oxidation of single-walled carbon nanotubes for the fabrication of transparent conductive films. Carbon, 2015, 81, 525-534.	10.3	16
102	Atomicâ€Distributed Coordination State of Metalâ€Phenolic Compounds Enabled Low Temperature Graphitization for Highâ€Performance Multioriented Graphite Anode. Small, 2020, 16, e2003104.	10.0	16
103	Monte Carlo simulation of copolymerization by ester interchange reaction in miscible polyester blends. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1637-1645.	2.1	15
104	Revisit to the correlation of surface characteristic nature with performance of N-enriched carbon-based supercapacitor. Carbon, 2018, 140, 68-76.	10.3	15
105	Enhancing the cycle stability of Li–O ₂ batteries <i>via</i> functionalized carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2020, 8, 4263-4273.	10.3	15
106	New modified poly(ethylene terephthalate) (MPET)-based adsorbent for heavy metal ions. Journal of Applied Polymer Science, 1997, 63, 773-778.	2.6	14
107	Effect of annealing with pressure on tungsten film properties fabricated by atmospheric plasma spray. Metals and Materials International, 2014, 20, 1037-1042.	3.4	14
108	Function-regeneration of non-porous hydrolyzed-MOF-derived materials. Nano Research, 2019, 12, 1921-1930.	10.4	14

#	Article	IF	Citations
109	Compressional behavior of carbon nanotube reinforced mesophase pitch-based carbon fibers. Fibers and Polymers, 2006, 7, 85-87.	2.1	13
110	Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition. Applied Physics Letters, 2014, 104, 021902.	3.3	13
111	Demonstration of the nanosize effect of carbon nanomaterials on the dehydrogenation temperature of ammonia borane. Nanoscale Advances, 2019, 1, 4697-4703.	4.6	13
112	Secondary Interactions of Graphene Oxide on Liquid Crystal Formation and Stability. Particle and Particle Systems Characterization, 2017, 34, 1600383.	2.3	12
113	One step synthesis of sulfur–carbon nanosheet hybrids via a solid solvothermal reaction for lithium sulfur batteries. RSC Advances, 2014, 4, 3684-3690.	3.6	11
114	Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer. Colloids and Surfaces B: Biointerfaces, 2016, 144, 303-310.	5.0	11
115	Regioselective succinylation and gelation behavior of glycol chitosan. Macromolecular Research, 2008, 16, 57-61.	2.4	10
116	Crucial Role of Oxidation Debris of Carbon Nanotubes in Subsequent End-Use Applications of Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17552-17564.	8.0	10
117	Versatile reorganization of metal-polyphenol coordination on CNTs for dispersion, assembly, and transformation. Carbon, 2019, 144, 402-409.	10.3	10
118	Electrostabilized homogeneous dispersion of boron nitride nanotubes in wide-range of solvents achieved by surface polarity modulation through pyridine attachment. Nano Research, 2020, 13, 344-352.	10.4	10
119	High-throughput thermal plasma synthesis of Fe _{<i>x</i>} Co _{1â^'<i>x</i>} nano-chained particles with unusually high permeability and their electromagnetic wave absorption properties at high frequency (1â€"26 GHz). Nanoscale, 2021, 13, 12004-12016.	5.6	10
120	Effect of microstructure and morphological properties of carbon nanotubes on the length reduction during melt processing. Composites Science and Technology, 2015, 112, 42-49.	7.8	9
121	Easy preparation of partially-opened carbon nanotubes by simple air oxidation for high performance Li–S batteries. RSC Advances, 2016, 6, 113522-113526.	3.6	8
122	Bifunctional Graphene Oxide Hole-Transporting and Barrier Layers for Transparent Bifacial Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 8824-8831.	5.1	8
123	Titration Method for the Identification of Surface Functional Groups., 2016,, 273-286.		7
124	One step "growth to spinning―of biaxially multilayered CNT web electrode for long cycling Li–O2 batteries. Carbon, 2021, 182, 318-326.	10.3	7
125	Accurate measurement of interlayer spacing value of carbon fibers using a silver foil as an internal standard. Carbon, 2006, 44, 1016-1019.	10.3	6
126	The enhanced anodic performance of highly crimped and crystalline nanofibrillar carbon in lithium-ion batteries. Electrochimica Acta, 2007, 53, 944-950.	5.2	6

#	Article	IF	CITATIONS
127	Effects of morphological characteristics of Pt nanoparticles supported on poly(acrylic acid)-wrapped multiwalled carbon nanotubes on electrochemical performance of direct methanol fuel cells. Journal of Materials Research, 2012, 27, 2035-2045.	2.6	6
128	Influence of the physicochemical characteristics of reduced graphene oxides on the gas permeability of the barrier films for organic electronics. Chemical Communications, 2017, 53, 6573-6576.	4.1	6
129	Surface energy modification of graphene oxide film by silanization co-functionalized with fluorine to maximize the moisture barrier property. Synthetic Metals, 2021, 277, 116770.	3.9	6
130	Synthesis and polymerization mechanism of bisacetoacetamides. Journal of Polymer Science Part A, 2001, 39, 1456-1462.	2.3	5
131	Catalyst-free and template-free preparation of semi-cylindrical carbon nanoribbons. Carbon, 2009, 47, 2391-2395.	10.3	5
132	A New Class of Carbon Nanostructures for Highâ€Performance Electroâ€Magnetic and â€Chemical Barriers. Advanced Science, 2021, 8, e2102718.	11.2	5
133	Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices. ChemSusChem, 2017, 10, 1644-1644.	6.8	4
134	Effect of solvents and thermal annealing on the morphology development of a novel block copolymer ionomer: a case study of sulfonated polystyrene-block-fluorinated polyisoprene. Journal of Polymer Engineering, 2013, 33, 49-59.	1.4	3
135	Effects of chirality and diameter of single-walled carbon nanotubes on their structural stability and solubility parameters. RSC Advances, 2014, 4, 33578.	3.6	3
136	Chemical modification of graphene oxide through poly(ethylene oxide)-conjugations. Macromolecular Research, 2017, 25, 452-460.	2.4	3
137	Effect of chemical structure on crystallization behavior of poly(phenylene alkylene dicarboxylate) (PPAD). Journal of Applied Polymer Science, 1997, 66, 1575-1582.	2.6	2
138	Poly(oxyethylene sugaramide)s: unprecedented multihydroxyl building blocks for tumor-homing nanoassembly. Journal of Materials Chemistry B, 2013, 1, 3437.	5.8	2
139	Concentration-driven polymorphic mesocrystal and morphosynthetic transformation toward omni-adsorbent with the widest range of pores. Chemical Engineering Journal, 2022, 433, 133871.	12.7	2
140	Syntheses of new film-forming aromatic poly(amide-imide)s containing isoindoloquinazolinedione unit in the backbone: Poly(biphenylphthalicdianhydride-oxydianiline-4,4′-diamino-3′-carbamoyl-benzanilide) (poly(BPDA-ODA-DACB)). Fibers and Polymers, 2001, 2, 92-97.	2.1	1
141	Oxidative stabilization of conjugated linoleic acid by one-pot PEGylation. Macromolecular Research, 2011, 19, 822-826.	2.4	1
142	Effect of Helmholtz Oscillation on Auto-shroud for APS Tungsten Carbide Coating. Journal of Thermal Spray Technology, 2013, 22, 756-763.	3.1	1
143	Effect of solvents and thermal annealing on the morphology development of a novel block copolymer ionomer: a case study of sulfonated polystyrene-block-fluorinated polyisoprene; J. Polym. Eng. 2013, 33, 49–59. Journal of Polymer Engineering, 2013, 33, 191-191.	1.4	1
144	Lithium Ion Batteries: Atomicâ€Distributed Coordination State of Metalâ€Phenolic Compounds Enabled Low Temperature Graphitization for Highâ€Performance Multioriented Graphite Anode (Small 33/2020). Small, 2020, 16, 2070182.	10.0	1

#	Article	IF	CITATIONS
145	Highly Enhanced Cycleability from High Crystalline Biaxially Aligned CNT Web for Li-Air Cathode Applications. ECS Meeting Abstracts, 2018, , .	0.0	1
146	Dual functions of ferrous sulfate as a pore-size controller and a carbon-yield enhancer in fabricating cellulose based porous carbons. Fibers and Polymers, 2008, 9, 160-165.	2.1	0
147	The influence of microstructure of carbon nanotubes on the degree of length reduction during melt processing with polycarbonate. , $2015, \ldots$		0