Howard Y Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921710/publications.pdf

Version: 2024-02-01

255 papers 89,109 citations

112 h-index 253 g-index

322 all docs $\begin{array}{c} 322 \\ \text{docs citations} \end{array}$

times ranked

322

80705 citing authors

#	Article	IF	CITATIONS
1	Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 2013, 10, 1213-1218.	19.0	5,209
2	Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464, 1071-1076.	27.8	4,648
3	Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs. Cell, 2007, 129, 1311-1323.	28.9	3,835
4	Molecular Mechanisms of Long Noncoding RNAs. Molecular Cell, 2011, 43, 904-914.	9.7	3,833
5	Genome Regulation by Long Noncoding RNAs. Annual Review of Biochemistry, 2012, 81, 145-166.	11.1	3,665
6	Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science, 2010, 329, 689-693.	12.6	2,976
7	Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 2016, 17, 47-62.	16.3	2,891
8	Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 2016, 29, 452-463.	16.8	2,584
9	ATACâ€seq: A Method for Assaying Chromatin Accessibility Genomeâ€Wide. Current Protocols in Molecular Biology, 2015, 109, 21.29.1-21.29.9.	2.9	2,391
10	Long Noncoding RNAs: Cellular Address Codes in Development and Disease. Cell, 2013, 152, 1298-1307.	28.9	2,279
11	Long noncoding RNAs and human disease. Trends in Cell Biology, 2011, 21, 354-361.	7.9	1,806
12	Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 2015, 523, 486-490.	27.8	1,798
13	A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472, 120-124.	27.8	1,760
14	An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature Methods, 2017, 14, 959-962.	19.0	1,653
15	Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions. Molecular Cell, 2011, 44, 667-678.	9.7	1,104
16	Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 2011, 43, 621-629.	21.4	1,080
17	m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells. Cell Stem Cell, 2014, 15, 707-719.	11.1	990
18	Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12877-12882.	7.1	983

#	Article	IF	CITATIONS
19	Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature Medicine, 2019, 25, 1251-1259.	30.7	974
20	Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics, 2016, 48, 1193-1203.	21.4	952
21	Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3738-3743.	7.1	934
22	Systematic Discovery of Xist RNA Binding Proteins. Cell, 2015, 161, 404-416.	28.9	886
23	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
24	HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nature Methods, 2016, 13, 919-922.	19.0	853
25	Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds. PLoS Biology, 2004, 2, e7.	5.6	824
26	Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493, 231-235.	27.8	810
27	The chromatin accessibility landscape of primary human cancers. Science, 2018, 362, .	12.6	781
28	Genome-wide measurement of RNA secondary structure in yeast. Nature, 2010, 467, 103-107.	27.8	713
29	Endothelial cell diversity revealed by global expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10623-10628.	7.1	679
30	Long Intergenic Noncoding RNAs: New Links in Cancer Progression. Cancer Research, 2011, 71, 3-7.	0.9	676
31	m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 2017, 548, 338-342.	27.8	668
32	Module Map of Stem Cell Genes Guides Creation of Epithelial Cancer Stem Cells. Cell Stem Cell, 2008, 2, 333-344.	11.1	652
33	Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 2015, 519, 486-490.	27.8	639
34	Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnology, 2019, 37, 925-936.	17.5	622
35	The NeST Long ncRNA Controls Microbial Susceptibility and Epigenetic Activation of the Interferon- \hat{l}^3 Locus. Cell, 2013, 152, 743-754.	28.9	611
36	Gene regulation in the immune system by long noncoding RNAs. Nature Immunology, 2017, 18, 962-972.	14.5	611

#	Article	IF	CITATIONS
37	ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nature Genetics, 2021, 53, 403-411.	21.4	610
38	CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355, .	12.6	566
39	Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 2018, 173, 1535-1548.e16.	28.9	545
40	Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons. Cell, 2013, 155, 621-635.	28.9	531
41	Long noncoding RNA in genome regulation. RNA Biology, 2010, 7, 582-585.	3.1	523
42	RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure. Cell, 2016, 165, 1267-1279.	28.9	520
43	Landscape and variation of RNA secondary structure across the human transcriptome. Nature, 2014, 505, 706-709.	27.8	519
44	Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature, 2015, 522, 221-225.	27.8	507
45	c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, 576, 293-300.	27.8	480
46	Long Noncoding RNAs in Cell-Fate Programming and Reprogramming. Cell Stem Cell, 2014, 14, 752-761.	11.1	461
47	Aging, Rejuvenation, and Epigenetic Reprogramming: Resetting the Aging Clock. Cell, 2012, 148, 46-57.	28.9	460
48	Deletional Tolerance Mediated by Extrathymic Aire-Expressing Cells. Science, 2008, 321, 843-847.	12.6	421
49	Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature Genetics, 2017, 49, 1602-1612.	21.4	419
50	Anatomic Demarcation by Positional Variation in Fibroblast Gene Expression Programs. PLoS Genetics, 2006, 2, e119.	3.5	413
51	Understanding the transcriptome through RNA structure. Nature Reviews Genetics, 2011, 12, 641-655.	16.3	411
52	A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. ELife, 2013, 2, e00762.	6.0	407
53	Atlas of Subcellular RNA Localization Revealed by APEX-Seq. Cell, 2019, 178, 473-490.e26.	28.9	400
54	A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell, 2016, 165, 1672-1685.	28.9	399

#	Article	IF	CITATIONS
55	Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes and Development, 2012, 26, 338-343.	5.9	391
56	Structural organization of the inactive X chromosome in the mouse. Nature, 2016, 535, 575-579.	27.8	369
57	RNA SHAPE analysis in living cells. Nature Chemical Biology, 2013, 9, 18-20.	8.0	366
58	Promoter of IncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell, 2018, 173, 1398-1412.e22.	28.9	362
59	N6-Methyladenosine Modification Controls Circular RNA Immunity. Molecular Cell, 2019, 76, 96-109.e9.	9.7	348
60	Sensing Self and Foreign Circular RNAs by Intron Identity. Molecular Cell, 2017, 67, 228-238.e5.	9.7	346
61	Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019, 575, 699-703.	27.8	343
62	Structure and Thermodynamics of N ⁶ -Methyladenosine in RNA: A Spring-Loaded Base Modification. Journal of the American Chemical Society, 2015, 137, 2107-2115.	13.7	331
63	Direct Lineage Conversion of Terminally Differentiated Hepatocytes to Functional Neurons. Cell Stem Cell, 2011, 9, 374-382.	11.1	326
64	Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nature Biotechnology, 2019, 37, 1458-1465.	17.5	321
65	The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell, 2017, 169, 1051-1065.e18.	28.9	314
66	Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 2021, 184, 2503-2519.e17.	28.9	312
67	Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 2021, 372, .	12.6	297
68	Genome-Wide Views of Chromatin Structure. Annual Review of Biochemistry, 2009, 78, 245-271.	11.1	292
69	Targeted Disruption of Hotair Leads to Homeotic Transformation and Gene Derepression. Cell Reports, 2013, 5, 3-12.	6.4	289
70	Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics, 2020, 52, 891-897.	21.4	273
71	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	28.9	269
72	Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 2017, 14, 621-628.	19.0	265

#	Article	IF	CITATIONS
73	Chromatin Isolation by RNA Purification (ChIRP). Journal of Visualized Experiments, 2012, , .	0.3	259
74	Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation. Nature Genetics, 2017, 49, 1522-1528.	21.4	255
75	Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549, 111-115.	27.8	247
76	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	27.8	244
77	Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes and Development, 2008, 22, 1865-1870.	5.9	239
78	RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature, 2015, 518, 249-253.	27.8	232
79	Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nature Immunology, 2020, 21, 1022-1033.	14.5	227
80	irCLIP platform for efficient characterization of protein–RNA interactions. Nature Methods, 2016, 13, 489-492.	19.0	222
81	Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biology, 2012, 13, R75.	9.6	221
82	Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2. Cell Host and Microbe, 2020, 28, 516-525.e5.	11.0	219
83	Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer's and Parkinson's diseases. Nature Genetics, 2020, 52, 1158-1168.	21.4	217
84	Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Cell, 2019, 176, 361-376.e17.	28.9	215
85	Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell, 2021, 184, 5053-5069.e23.	28.9	209
86	Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human \hat{l}^2 Cell Function. Cell Metabolism, 2016, 23, 909-920.	16.2	205
87	Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nature Biotechnology, 2014, 32, 562-568.	17.5	202
88	ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nature Methods, 2016, 13, 1013-1020.	19.0	199
89	An inducible long noncoding RNA amplifies DNA damage signaling. Nature Genetics, 2016, 48, 1370-1376.	21.4	195
90	Genome-wide Measurement of RNA Folding Energies. Molecular Cell, 2012, 48, 169-181.	9.7	192

#	Article	IF	Citations
91	Chromatin accessibility dynamics in a model of human forebrain development. Science, 2020, 367, .	12.6	187
92	RNA templating the epigenome. Epigenetics, 2011, 6, 539-543.	2.7	184
93	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	8.2	183
94	Long Noncoding RNAs: Molecular Modalities to Organismal Functions. Annual Review of Biochemistry, 2020, 89, 283-308.	11.1	183
95	Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. Cell Stem Cell, 2015, 17, 675-688.	11.1	177
96	CD44+ Cells in Head and Neck Squamous Cell Carcinoma Suppress T-Cell–Mediated Immunity by Selective Constitutive and Inducible Expression of PD-L1. Clinical Cancer Research, 2016, 22, 3571-3581.	7.0	177
97	Gpr124 is essential for blood–brain barrier integrity in central nervous system disease. Nature Medicine, 2017, 23, 450-460.	30.7	177
98	Essential role of IncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. ELife, 2014, 3, e02046.	6.0	176
99	Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nature Reviews Cardiology, 2020, 17, 457-473.	13.7	174
100	The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. ELife, $2017, 6, .$	6.0	167
101	A dermal <i>HOX</i> transcriptional program regulates site-specific epidermal fate. Genes and Development, 2008, 22, 303-307.	5.9	165
102	Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nature Biotechnology, 2014, 32, 933-940.	17.5	161
103	Long Noncoding RNA in Hematopoiesis and Immunity. Immunity, 2015, 42, 792-804.	14.3	161
104	Physiological roles of long noncoding RNAs: insight from knockout mice. Trends in Cell Biology, 2014, 24, 594-602.	7.9	156
105	Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7723-7728.	7.1	156
106	DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature, 2015, 528, 517-522.	27.8	154
107	Tandem Stem-Loops in roX RNAs Act Together to Mediate X Chromosome Dosage Compensation in Drosophila. Molecular Cell, 2013, 51, 156-173.	9.7	152
108	Rapid evolutionary turnover underlies conserved lncRNA–genome interactions. Genes and Development, 2016, 30, 191-207.	5.9	152

#	Article	IF	Citations
109	Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nature Protocols, 2016, 11, 273-290.	12.0	147
110	Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. Journal of Clinical Investigation, 2008, 118, 1712-1726.	8.2	143
111	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	28.9	141
112	Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nature Genetics, 2018, 50, 1140-1150.	21.4	139
113	Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Cancer Cell, 2017, 32, 27-41.e4.	16.8	136
114	The histone demethylase UTX enables RB-dependent cell fate control. Genes and Development, 2010, 24, 327-332.	5.9	135
115	A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biology, 2015, 16, 284.	8.8	135
116	A TGFÎ ² -Responsive Gene Signature Is Associated with a Subset of Diffuse Scleroderma with Increased Disease Severity. Journal of Investigative Dermatology, 2010, 130, 694-705.	0.7	132
117	Individuality and Variation of Personal Regulomes in Primary Human T Cells. Cell Systems, 2015, 1, 51-61.	6.2	128
118	Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature, 2018, 554, 112-117.	27.8	125
119	Technologies to probe functions and mechanisms of long noncoding RNAs. Nature Structural and Molecular Biology, 2015, 22, 29-35.	8.2	124
120	Transcript-indexed ATAC-seq for precision immune profiling. Nature Medicine, 2018, 24, 580-590.	30.7	124
121	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 2020, 370, .	12.6	123
122	ecDNA hubs drive cooperative intermolecular oncogene expression. Nature, 2021, 600, 731-736.	27.8	123
123	Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons. Cell Reports, 2017, 20, 3236-3247.	6.4	121
124	Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature, 2018, 563, 514-521.	27.8	121
125	RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Systems, 2020, 11, 102-108.e3.	6.2	119
126	Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circulation Research, 2017, 121, 376-391.	4.5	118

#	Article	IF	Citations
127	The road ahead in genetics and genomics. Nature Reviews Genetics, 2020, 21, 581-596.	16.3	118
128	Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis and Rheumatism, 2009, 60, 584-591.	6.7	117
129	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	5.5	109
130	Structured elements drive extensive circular RNA translation. Molecular Cell, 2021, 81, 4300-4318.e13.	9.7	108
131	B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell, 2021, 184, 1790-1803.e17.	28.9	105
132	Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nature Immunology, 2019, 20, 1161-1173.	14.5	100
133	GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nature Communications, 2019, 10, 4955.	12.8	100
134	Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. ELife, 2019, 8 , .	6.0	93
135	Identification of a Selective Polymerase Enables Detection of N ⁶ -Methyladenosine in RNA. Journal of the American Chemical Society, 2013, 135, 19079-19082.	13.7	92
136	7SK-BAF axis controls pervasive transcription at enhancers. Nature Structural and Molecular Biology, 2016, 23, 231-238.	8.2	92
137	Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biology, 2017, 18, 15.	8.8	92
138	Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. Nature Structural and Molecular Biology, 2014, 21, 585-590.	8.2	90
139	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	28.9	88
140	Transcriptome sequencing in Sézary syndrome identifies Sézary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood, 2012, 120, 3288-3297.	1.4	85
141	Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nature Protocols, 2013, 8, 849-869.	12.0	85
142	Engineering circular RNA for enhanced protein production. Nature Biotechnology, 2023, 41, 262-272.	17.5	83
143	Dynamic Chromatin Localization of Sirt6 Shapes Stress- and Aging-Related Transcriptional Networks. PLoS Genetics, 2011, 7, e1002153.	3.5	82
144	Epigenomics. Circulation Research, 2018, 122, 1191-1199.	4.5	80

#	Article	IF	Citations
145	An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nature Immunology, 2019, 20, 1174-1185.	14.5	80
146	The role of <i>Xist</i> â€mediated Polycomb recruitment in the initiation of Xâ€chromosome inactivation. EMBO Reports, 2019, 20, e48019.	4.5	79
147	Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells. Nature Genetics, 2017, 49, 377-386.	21.4	76
148	Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. Nature Communications, 2018, 9, 4590.	12.8	76
149	TFAP2C- and p63-Dependent Networks Sequentially Rearrange Chromatin Landscapes to Drive Human Epidermal Lineage Commitment. Cell Stem Cell, 2019, 24, 271-284.e8.	11.1	76
150	Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	76
151	A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity, 2019, 50, 362-377.e6.	14.3	72
152	Dissecting noncoding and pathogen RNA–protein interactomes. Rna, 2015, 21, 135-143.	3.5	71
153	Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell, 2016, 62, 34-46.	9.7	71
154	HiChIRP reveals RNA-associated chromosome conformation. Nature Methods, 2019, 16, 489-492.	19.0	70
155	Uncovering the role of genomic "dark matter―in human disease. Journal of Clinical Investigation, 2012, 122, 1589-1595.	8.2	70
156	Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nature Methods, 2012, 9, 1192-1194.	19.0	69
157	Rapid chromatin repression by Aire provides precise control of immune tolerance. Nature Immunology, 2018, 19, 162-172.	14.5	69
158	A Transcriptional Program Mediating Entry into Cellular Quiescence. PLoS Genetics, 2007, 3, e91.	3.5	67
159	Decoding the RNA structurome. Current Opinion in Structural Biology, 2016, 36, 142-148.	5.7	66
160	BABEL enables cross-modality translation between multiomic profiles at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	66
161	An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell, 2018, 174, 218-230.e13.	28.9	64
162	Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. ELife, 2019, 8, .	6.0	64

#	Article	IF	CITATIONS
163	Comparison of SHAPE reagents for mapping RNA structures inside living cells. Rna, 2017, 23, 169-174.	3.5	62
164	3D ATAC-PALM: super-resolution imaging of the accessible genome. Nature Methods, 2020, 17, 430-436.	19.0	62
165	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016, 7, 28169-28182.	1.8	62
166	HOTAIR: Flight of noncoding RNAs in cancer metastasis. Cell Cycle, 2010, 9, 3391-3392.	2.6	61
167	Long Noncoding RNAs: At the Intersection of Cancer and Chromatin Biology. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026492.	6.2	60
168	Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Annals of the Rheumatic Diseases, 2020, 79, 507-517.	0.9	60
169	GPC2-CAR TÂcells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, 2022, 40, 53-69.e9.	16.8	60
170	Mechanistic insights in X-chromosome inactivation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160356.	4.0	59
171	The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. ELife, 2019, 8, .	6.0	59
172	Understanding RNA-Chromatin Interactions Using Chromatin Isolation by RNA Purification (ChIRP). Methods in Molecular Biology, 2016, 1480, 115-123.	0.9	56
173	Recruiting T cells in cancer immunotherapy. Science, 2021, 372, 130-131.	12.6	56
174	LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genetics, 2015, 11, e1005680.	3.5	56
175	<scp>RNA</scp> structural analysis by evolving <scp>SHAPE</scp> chemistry. Wiley Interdisciplinary Reviews RNA, 2014, 5, 867-881.	6.4	54
176	Structural modularity of the XIST ribonucleoprotein complex. Nature Communications, 2020, 11, 6163.	12.8	53
177	HOXC10 Expression Supports the Development of Chemotherapy Resistance by Fine Tuning DNA Repair in Breast Cancer Cells. Cancer Research, 2016, 76, 4443-4456.	0.9	52
178	Molecular and Neural Functions of Rail , the Causal Gene for Smith-Magenis Syndrome. Neuron, 2016, 92, 392-406.	8.1	51
179	Crystal structure of the Nâ€terminal region of human Ash2L shows a wingedâ€helix motif involved in DNA binding. EMBO Reports, 2011, 12, 797-803.	4.5	49
180	An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development. PLoS Genetics, 2014, 10, e1004645.	3.5	49

#	Article	IF	CITATIONS
181	Retinoic acid and BMP4 cooperate with p63 to alter chromatin dynamics during surface epithelial commitment. Nature Genetics, 2018, 50, 1658-1665.	21.4	47
182	Active chromatin and noncoding RNAs: an intimate relationship. Current Opinion in Genetics and Development, 2012, 22, 172-178.	3.3	45
183	The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation. Nature Genetics, 2021, 53, 1564-1576.	21.4	45
184	Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace. Nature Methods, 2016, 13, 245-247.	19.0	44
185	Prrx1 Fibroblasts Represent a Pro-fibrotic Lineage in the Mouse Ventral Dermis. Cell Reports, 2020, 33, 108356.	6.4	44
186	Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 367-386.	22.4	44
187	Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Research, 2015, 43, 1859-1868.	14.5	43
188	IncRNA Structure: Message to the Heart. Molecular Cell, 2016, 64, 1-2.	9.7	43
189	Diverse IncRNA mechanisms in brain development and disease. Current Opinion in Genetics and Development, 2020, 65, 42-46.	3.3	43
190	Anatomic Demarcation of Cells: Genes to Patterns. Science, 2009, 326, 1206-1207.	12.6	42
191	Systematic Characterization of Long Noncoding RNAs Reveals the Contrasting Coordination of <i>Cis</i> - and <i>Trans</i> -Molecular Regulation in Human Fetal and Adult Hearts. Circulation: Cardiovascular Genetics, 2016, 9, 110-118.	5.1	42
192	A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature, 2020, 583, 447-452.	27.8	40
193	Preleukemic Hematopoietic Stem Cells in Human Acute Myeloid Leukemia. Frontiers in Oncology, 2017, 7, 263.	2.8	39
194	Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia. Cell Death and Disease, 2020, 11, 102.	6.3	39
195	A Chromatin Basis for Cell Lineage and Disease Risk in the Human Pancreas. Cell Systems, 2018, 7, 310-322.e4.	6.2	38
196	Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nature Cell Biology, 2020, 22, 401-411.	10.3	38
197	ChIRP-MS: RNA-Directed Proteomic Discovery. Methods in Molecular Biology, 2018, 1861, 37-45.	0.9	37
198	Endogenous Retrovirus-Derived IncRNA BANCR Promotes Cardiomyocyte Migration in Humans and Non-human Primates. Developmental Cell, 2020, 54, 694-709.e9.	7.0	37

#	Article	IF	Citations
199	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discovery, 2021, 2, 648-665.	5.0	37
200	Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	36
201	Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron, 2022, 110, 1193-1210.e13.	8.1	36
202	PEPATAC: an optimized pipeline for ATAC-seq data analysis with serial alignments. NAR Genomics and Bioinformatics, 2021, 3, Iqab101.	3.2	34
203	Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions. Nature Communications, 2019, 10, 3221.	12.8	33
204	Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. ELife, 2020, 9, .	6.0	33
205	Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
206	JUN promotes hypertrophic skin scarring via CD36 in preclinical in vitro and in vivo models. Science Translational Medicine, 2021, 13, eabb3312.	12.4	32
207	The RNA Base-Pairing Problem and Base-Pairing Solutions. Cold Spring Harbor Perspectives in Biology, 2018, 10, a034926.	5.5	31
208	Cytotopic localization by long noncoding RNAs. Current Opinion in Cell Biology, 2013, 25, 195-199.	5.4	30
209	Identification of Genes Promoting Skin Youthfulness by Genome-Wide Association Study. Journal of Investigative Dermatology, 2014, 134, 651-657.	0.7	30
210	BRD2 compartmentalizes the accessible genome. Nature Genetics, 2022, 54, 481-491.	21.4	29
211	IL-4Rα Inhibitor for Atopic Disease. Cell, 2017, 170, 222.	28.9	28
212	Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nature Communications, 2019, 10, 5712.	12.8	27
213	Fitness effects of CRISPR/Cas9-targeting of long noncoding RNA genes. Nature Biotechnology, 2020, 38, 573-576.	17.5	27
214	LKB1 inactivation modulates chromatin accessibility to drive metastatic progression. Nature Cell Biology, 2021, 23, 915-924.	10.3	26
215	Eruptive Xanthomas Associated With Olanzapine Use. Archives of Dermatology, 2003, 139, 1045-8.	1.4	25
216	Tumor suppression by the histone demethylase UTX. Cell Cycle, 2010, 9, 2043-2044.	2.6	22

#	Article	IF	CITATIONS
217	Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nature Communications, 2020, 11, 5843.	12.8	22
218	The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Molecular Cell, 2022, 82, 2370-2384.e10.	9.7	22
219	Enhancer Connectome Nominates Target GenesÂof Inherited Risk Variants from Inflammatory Skin Disorders. Journal of Investigative Dermatology, 2019, 139, 605-614.	0.7	21
220	Omni-ATAC-seq: Improved ATAC-seq protocol. Protocol Exchange, 0, , .	0.3	21
221	PIRCh-seq: functional classification of non-coding RNAs associated with distinct histone modifications. Genome Biology, 2019, 20, 292.	8.8	20
222	Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces. Molecular Cell, 2020, 80, 903-914.e8.	9.7	20
223	Challenges and recommendations for epigenomics in precision health. Nature Biotechnology, 2017, 35, 1128-1132.	17.5	19
224	Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Reports, 2020, 32, 108180.	6.4	18
225	Chromatin accessibility associates with protein-RNA correlation in human cancer. Nature Communications, 2021, 12, 5732.	12.8	18
226	A Genetic Bottleneck of Mitochondrial DNA During Human Lymphocyte Development. Molecular Biology and Evolution, 2022, 39, .	8.9	18
227	Comment on "Hotair Is Dispensable for Mouse Development". PLoS Genetics, 2016, 12, e1006406.	3.5	17
228	Microarray Analysis of Stem Cells and Differentiation. Methods in Enzymology, 2006, 420, 225-254.	1.0	16
229	Single-cell profiling of lncRNAs in the developing human brain. Genome Biology, 2016, 17, 68.	8.8	16
230	In Situ Dissection of RNA Functional Subunits by Domain-Specific Chromatin Isolation by RNA Purification (dChIRP). Methods in Molecular Biology, 2015, 1262, 199-213.	0.9	16
231	RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing. Rna, 2020, 26, 851-865.	3.5	15
232	CRISPRpic: fast and precise analysis for CRISPR-induced mutations via $\langle u \rangle p \langle u \rangle refixed \langle u \rangle i \langle u \rangle ndex \langle u \rangle c \langle u \rangle ounting. NAR Genomics and Bioinformatics, 2020, 2, Iqaa012.$	3.2	15
233	Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin. Modern Pathology, 2018, 31, 1479-1486.	5.5	14
234	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13

#	Article	IF	Citations
235	Circular RNA migration in agarose gel electrophoresis. Molecular Cell, 2022, 82, 1768-1777.e3.	9.7	13
236	Novel Gene Expression Profile of Women with Intrinsic Skin Youthfulness by Whole Transcriptome Sequencing. PLoS ONE, 2016, 11, e0165913.	2.5	11
237	Turning skin into embryonic stem cells. Nature Medicine, 2007, 13, 783-784.	30.7	10
238	First-in-Human Assessment of Feasibility and Safety of Multiplexed Genetic Engineering of Autologous T Cells Expressing NY-ESO -1 TCR and CRISPR/Cas9 Gene Edited to Eliminate Endogenous TCR and PD-1 (NYCE T cells) in Advanced Multiple Myeloma (MM) and Sarcoma. Blood, 2019, 134, 49-49.	1.4	10
239	Subcellular Spatial Transcriptomes: Emerging Frontier for Understanding Gene Regulation. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 31-45.	1.1	9
240	Patterning Skin Pigmentation via Dickkopf. Journal of Investigative Dermatology, 2007, 127, 994-995.	0.7	7
241	Tracking the immune response with single-cell genomics. Vaccine, 2020, 38, 4487-4490.	3.8	7
242	Locus specific epigenetic modalities of random allelic expression imbalance. Nature Communications, 2021, 12, 5330.	12.8	7
243	RNA-binding proteins direct myogenic cell fate decisions. ELife, 0, 11, .	6.0	7
244	Profiling chromatin accessibility responses in human neutrophils with sensitive pathogen detection. Life Science Alliance, 2021, 4, e202000976.	2.8	5
245	Genome-Wide Probing of RNA Structures In Vitro Using Nucleases and Deep Sequencing. Methods in Molecular Biology, 2016, 1361, 141-160.	0.9	4
246	LncRNA Seduction of GOT2 Goes Viral. Immunity, 2017, 47, 1021-1023.	14.3	4
247	Oncogene Convergence in Extrachromosomal DNA Hubs. Cancer Discovery, 2022, 12, 1195-1198.	9.4	4
248	Personal regulome navigation of cancer. Nature Reviews Cancer, 2021, 21, 609-610.	28.4	3
249	CRISPR engineering turns on genes. Nature, 2015, 517, 560-562.	27.8	1
250	Factors That May Promote an Effective Local Research Environment. Journal of Investigative Dermatology, 2016, 136, 1529-1531.	0.7	1
251	fSHAPE, fSHAPE-eCLIP, and SHAPE-eCLIP probe transcript regions that interact with specific proteins. STAR Protocols, 2021, 2, 100762.	1.2	1
252	HiChIRP: RNA-centric chromatin conformation. Protocol Exchange, 0, , .	0.3	1

#	Article	IF	CITATIONS
253	Identification of Protein-RNA Interactions in Mouse Testis Tissue Using fRIP. Bio-protocol, 2022, 12, e4286.	0.4	1
254	High-throughput RNA interference. , 2005, , 470-479.		0
255	Transcription coactivator and IncRNA duet evoke Hox genes. PLoS Genetics, 2017, 13, e1006797.	3.5	O