
Didier Astruc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/692157/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nanocatalyzed upcycling of the plastic wastes for a circular economy. Coordination Chemistry Reviews, 2022, 458, 214422.	9.5	54
2	Pd, Rh and Ru nanohybrid-catalyzed tetramethyldisiloxane hydrolysis for H ₂ generation, nitrophenol reduction and Suzuki–Miyaura cross-coupling. Inorganic Chemistry Frontiers, 2022, 9, 1416-1422.	3.0	12
3	Looking at platinum carbonyl nanoclusters as <i>superatoms</i> . Nanoscale, 2022, 14, 3946-3957.	2.8	3
4	Sharp Volcano-Type Synergy and Visible Light Acceleration in H ₂ Release upon B ₂ (OH) ₄ Hydrolysis Catalyzed by Au-Rh@Click-Dendrimer Nanozymes. ACS Applied Energy Materials, 2022, 5, 3834-3844.	2.5	5
5	Exploiting the Fracture in Metalâ€Organic Frameworks: A General Strategy for Bifunctional Atomâ€Precise Nanocluster/ZIFâ€8(300°C) Composites. Small, 2022, 18, e2107459.	5.2	11
6	Ferrocene-based dendritic macromolecules as efficient supports in nanocatalysis. Polymer, 2022, 246, 124714.	1.8	7
7	A Career in Catalysis: Jean-Marie M. Basset. ACS Catalysis, 2022, 12, 4961-4977.	5.5	3
8	Efficient and controlled H ₂ release from sodium formate. Inorganic Chemistry Frontiers, 2022, 9, 3514-3521.	3.0	10
9	Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coordination Chemistry Reviews, 2021, 426, 213585.	9.5	87
10	Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chemical Society Reviews, 2021, 50, 3437-3484.	18.7	194
11	"Click―dendrimer-Pd nanoparticle assemblies as enzyme mimics: catalytic <i>o</i> -phenylenediamine oxidation and application in colorimetric H ₂ O ₂ detection. Inorganic Chemistry Frontiers, 2021, 8, 3301-3307.	3.0	17
12	Green fabrication of hydrogel-immobilized Au@Ag nanoparticles using tannic acid and their application in catalysis. New Journal of Chemistry, 2021, 45, 6914-6927.	1.4	14
13	Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging. Chemical Science, 2021, 12, 11722-11729.	3.7	48
14	Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au ₄ Cu ₄ –ï€-Alkyne Intermediate. Journal of the American Chemical Society, 2021, 143, 1768-1772.	6.6	45
15	ROMP Synthesis of Sideâ€Chain Ferroceneâ€Containing Polyelectrolyte and Its Redoxâ€Responsive Hydrogels Showing Dramatically Improved Swelling with βâ€Cyclodextrin. Macromolecular Rapid Communications, 2021, 42, e2100049.	2.0	12
16	Acid―and Base atalyzed Hydrolytic Hydrogen Evolution from Diboronic Acid. European Journal of Inorganic Chemistry, 2021, 2021, 3013-3018.	1.0	16
17	Generation of Catalytically Active Gold Nanocrystals in Water Induced with Ferrocene Carboxylate. European Journal of Inorganic Chemistry, 2021, 2021, 2471-2479.	1.0	1
18	Self-Assembly of a Triazolylferrocenyl Dendrimer in Water Yields Nontraditional Intrinsic Green Fluorescent Vesosomes for Nanotheranostic Applications. Journal of the American Chemical Society, 2021, 143, 12948-12954.	6.6	17

#	Article	IF	CITATIONS
19	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	1.7	8
20	Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation. Separation and Purification Technology, 2021, 275, 119141.	3.9	41
21	Ferrocenyl-terminated polyphenylene-type "click―dendrimers as supports for efficient gold and palladium nanocatalysis. Dalton Transactions, 2021, 50, 11852-11860.	1.6	8
22	New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chemical Science, 2021, 12, 3660-3667.	3.7	22
23	Degradation of tetracycline over carbon nanosheet: high efficiency, mechanism and biotoxicity assessment. Environmental Science: Nano, 2021, 8, 3762-3773.	2.2	8
24	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
25	Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	23.0	849
26	Precise Cu Localizationâ€Dependent Catalytic Degradation of Organic Pollutants in Water. ChemCatChem, 2020, 12, 175-180.	1.8	25
27	Pd–Ru nanocatalysts derived from a Pd-induced aerogel for dramatic boosting of hydrogen release. Nanoscale, 2020, 12, 2345-2349.	2.8	14
28	Design and Functions of Macromolecular Electron-Reservoir Complexes and Devices. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 111-120.	1.9	4
29	Optimization of Cu catalysts for nitrophenol reduction, click reaction and alkyne coupling. Inorganic Chemistry Frontiers, 2020, 7, 939-945.	3.0	52
30	Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect. Journal of Hazardous Materials, 2020, 388, 121761.	6.5	61
31	Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments. Accounts of Chemical Research, 2020, 53, 2483-2493.	7.6	122
32	Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. Advanced Science, 2020, 7, 2002221.	5.6	24
33	Visible-Light Acceleration of H ₂ Evolution from Aqueous Solutions of Inorganic Hydrides Catalyzed by Gold-Transition-Metal Nanoalloys. ACS Applied Materials & Interfaces, 2020, 12, 53816-53826.	4.0	26
34	Multiple applications of polymers containing electron-reservoir metal-sandwich complexes. Chemical Communications, 2020, 56, 11374-11385.	2.2	25
35	ZIF-8-based <i>vs.</i> ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Inorganic Chemistry Frontiers, 2020, 7, 3945-3952.	3.0	13
36	Supramolecular redox-responsive ferrocene hydrogels and microgels. Coordination Chemistry Reviews, 2020, 419, 213406.	9.5	71

#	Article	IF	CITATIONS
37	Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au ₂₅ @ZIF-67. Journal of the American Chemical Society, 2020, 142, 4126-4130.	6.6	141
38	Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 2020, 408, 213180.	9.5	389
39	Introduction: Nanoparticles in Catalysis. Chemical Reviews, 2020, 120, 461-463.	23.0	334
40	Catalyzed Hydrolysis of Tetrahydroxydiboron by Graphene Quantum Dot-Stabilized Transition-Metal Nanoparticles for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 7513-7522.	3.2	64
41	Theoretical Analysis of the Mackay Icosahedral Cluster Pd55(PiPr3)12(μ3 O)20: An Open‧hell 20â€Electron Superatom. Chemistry - A European Journal, 2020, 26, 5508-5514.	1.7	7
42	The supramolecular redox functions of metallomacromolecules. Journal of Leather Science and Engineering, 2020, 2, .	2.7	8
43	Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2019, 533, 161-170.	5.0	85
44	Stabilization of a new nanocomposite family by reduction of gold nanoclusters with electron-reservoir complexes. Chemical Communications, 2019, 55, 10277-10280.	2.2	6
45	High catalytic activity of Rh nanoparticles generated from cobaltocene and RhCl ₃ in aqueous solution. Inorganic Chemistry Frontiers, 2019, 6, 2704-2708.	3.0	8
46	Palladium Separation by Pd-Catalyzed Gel Formation via Alkyne Coupling. Chemistry of Materials, 2019, 31, 7386-7394.	3.2	28
47	Highly Efficient and Selective Co@ZIFâ€8 Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis. ChemCatChem, 2019, 11, 1643-1649.	1.8	61
48	Syntheses and applications of dendronized polymers. Progress in Polymer Science, 2019, 96, 43-105.	11.8	55
49	Efficient "Clickâ€â€Dendrimerâ€Supported Synergistic Bimetallic Nanocatalysis for Hydrogen Evolution by Sodium Borohydride Hydrolysis. ChemCatChem, 2019, 11, 2341-2349.	1.8	26
50	Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Scientific Reports, 2019, 9, 4366.	1.6	54
51	Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. Polymer, 2019, 173, 1-10.	1.8	35
52	Gallolâ€Tethered Injectable AuNP Hydrogel with Desirable Selfâ€Healing and Catalytic Properties. Macromolecular Chemistry and Physics, 2019, 220, 1800427.	1.1	17
53	Dramatic Synergy in CoPt Nanocatalysts Stabilized by "Click―Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane. ACS Catalysis, 2019, 9, 1110-1119.	5.5	157
54	Supramolecular redox-responsive substrate carrier activity of a ferrocenyl Janus device. Journal of Inorganic Biochemistry, 2019, 193, 31-41.	1.5	23

#	Article	IF	CITATIONS
55	Metallopolymers for advanced sustainable applications. Chemical Society Reviews, 2019, 48, 558-636.	18.7	139
56	Electron―and Hydrideâ€Reservoir Organometallics as Precursors of Catalytically Efficient Transition Metal Nanoparticles in Water. Chemistry - A European Journal, 2018, 24, 6645-6653.	1.7	10
57	Development of the Applications of Palladium on Charcoal in Organic Synthesis. Advanced Synthesis and Catalysis, 2018, 360, 3426-3459.	2.1	83
58	"Click―Dendrimerâ€6tabilized Nanocatalysts for Efficient Hydrogen Release upon Ammoniaâ€Borane Hydrolysis. ChemCatChem, 2018, 10, 2673-2680.	1.8	34
59	Atomically precise copper nanoclusters and their applications. Coordination Chemistry Reviews, 2018, 359, 112-126.	9.5	216
60	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
61	Tetrablock Metallopolymer Electrochromes. Angewandte Chemie, 2018, 130, 2226-2230.	1.6	3
62	Tetrablock Metallopolymer Electrochromes. Angewandte Chemie - International Edition, 2018, 57, 2204-2208.	7.2	46
63	Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coordination Chemistry Reviews, 2018, 364, 51-85.	9.5	107
64	Compared Catalytic Efficiency of Click-Dendrimer-Stabilized Late Transition Metal Nanoparticles in 4-Nitrophenol Reduction. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 399-406.	1.9	18
65	Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews, 2018, 356, 147-164.	9.5	362
66	Living ROMP Synthesis and Redox Properties of Triblock Metallocopolymers Containing Side hain Iron and Cobalt Sandwich Complexes. Macromolecular Chemistry and Physics, 2018, 219, 1800384.	1.1	14
67	Cobaltocene Reduction of Cu and Ag Salts and Catalytic Behavior of the Nanoparticles Formed. ACS Catalysis, 2018, 8, 8100-8106.	5.5	25
68	Ferrocenyl Janus mixed-dendron stars and their stabilization of Au and Ag nanoparticles. Tetrahedron, 2018, 74, 4777-4789.	1.0	21
69	Highly Selective and Sharp Volcano-type Synergistic Ni ₂ Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis. Journal of the American Chemical Society, 2018, 140, 10034-10042.	6.6	306
70	Dentromers, a Family of Super Dendrimers with Specific Properties and Applications. Molecules, 2018, 23, 966.	1.7	18
71	Electron Flow in Large Metallomacromolecules and Electronic Switching of Nanoparticle Stabilization: Click Ferrocenyl Dentromers that Reduce Au ^{III} to Au Nanoparticles. Chemistry - A European Journal, 2018, 24, 12686-12694.	1.7	9
72	Translocation of silver nanoparticles in the <i>ex vivo</i> human placenta perfusion model characterized by single particle ICP-MS. Nanoscale, 2018, 10, 11980-11991.	2.8	49

#	Article	IF	CITATIONS
73	The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chemical Society Reviews, 2017, 46, 816-854.	18.7	458
74	From Galvanic to Antiâ€Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science. Advanced Materials, 2017, 29, 1605305.	11.1	76
75	Electrostatic Assembly of Functional and Macromolecular Ferricinium Chloride-Stabilized Gold Nanoparticles. Inorganic Chemistry, 2017, 56, 2784-2791.	1.9	17
76	Metallomacromolecules containing cobalt sandwich complexes: Synthesis and functional materials properties. Coordination Chemistry Reviews, 2017, 337, 34-79.	9.5	47
77	Exposure to air boosts CuAAC reactions catalyzed by PEG-stabilized Cu nanoparticles. Chemical Communications, 2017, 53, 5384-5387.	2.2	29
78	RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol. Journal of Materials Science, 2017, 52, 9465-9476.	1.7	19
79	Click Co sandwich-terminated dendrimers as polyhydride reservoirs and micellar templates. Chemical Communications, 2017, 53, 6267-6270.	2.2	4
80	Cytotoxic and Proinflammatory Effects of Metal-Based Nanoparticles on THP-1 Monocytes Characterized by Combined Proteomics Approaches. Journal of Proteome Research, 2017, 16, 689-697.	1.8	34
81	An efficient parts-per-million α-Fe ₂ O ₃ nanocluster/graphene oxide catalyst for Suzuki–Miyaura coupling reactions and 4-nitrophenol reduction in aqueous solution. Chemical Communications, 2017, 53, 644-646.	2.2	46
82	Redox synthesis and high catalytic efficiency of transition-metal nanoparticle–graphene oxide nanocomposites. Journal of Materials Chemistry A, 2017, 5, 21947-21954.	5.2	20
83	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352, 306-327.	9.5	484
84	Synthesis of late transition-metal nanoparticles by Na naphthalenide reduction of salts and their catalytic efficiency. Inorganic Chemistry Frontiers, 2017, 4, 2037-2044.	3.0	5
85	Prevention of aerobic oxidation of copper nanoparticles by anti-galvanic alloying: gold versus silver. Chemical Communications, 2017, 53, 11134-11137.	2.2	17
86	Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release. Journal of the American Chemical Society, 2017, 139, 11610-11615.	6.6	293
87	New ROMP Synthesis of Ferrocenyl Dendronized Polymers. Macromolecular Rapid Communications, 2017, 38, 1700448.	2.0	31
88	Why is Ferrocene so Exceptional?. European Journal of Inorganic Chemistry, 2017, 2017, 6-29.	1.0	423
89	Introduction to Nanomedicine. Molecules, 2016, 21, 4.	1.7	24
90	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie - International Edition, 2016, 55, 3091-3095.	7.2	130

#	Article	IF	CITATIONS
91	Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties. Macromolecular Rapid Communications, 2016, 37, 630-636.	2.0	16
92	Pd/C as an Efficient and Reusable Catalyst for the Selective Nâ€Alkylation of Amines with Alcohols. ChemCatChem, 2016, 8, 1043-1045.	1.8	30
93	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie, 2016, 128, 3143-3147.	1.6	23
94	Molecular Sieving with Vertically Aligned Mesoporous Silica Films and Electronic Wiring through Isolating Nanochannels. Chemistry of Materials, 2016, 28, 2511-2514.	3.2	58
95	On metallocene-containing macromolecules and their applications. Journal of Organometallic Chemistry, 2016, 813, 95-102.	0.8	19
96	Reprint of: On metallocene-containing macromolecules and their applications. Journal of Organometallic Chemistry, 2016, 821, 54-61.	0.8	2
97	Supramolecular nanoreactors for catalysis. Coordination Chemistry Reviews, 2016, 324, 106-122.	9.5	111
98	Liquid–Liquid Interfacial Electron Transfer from Ferrocene to Gold(III): An Ultrasimple and Ultrafast Gold Nanoparticle Synthesis in Water under Ambient Conditions. Inorganic Chemistry, 2016, 55, 6361-6363.	1.9	25
99	Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nature Communications, 2016, 7, 13152.	5.8	99
100	Living ROMP Syntheses and Redox Properties of Triblock Metallocopolymer Redox Cascades. Macromolecules, 2016, 49, 4763-4773.	2.2	28
101	Design and Applications of an Efficient Amphiphilic "Click―Cu ^I Catalyst in Water. ACS Catalysis, 2016, 6, 5424-5431.	5.5	59
102	From Mono to Tris-1,2,3-triazole-Stabilized Gold Nanoparticles and Their Compared Catalytic Efficiency in 4-Nitrophenol Reduction. Inorganic Chemistry, 2016, 55, 6776-6780.	1.9	33
103	Living ROMP Synthesis and Redox Properties of Diblock Ferrocene/Cobalticenium Copolymers. Macromolecular Rapid Communications, 2016, 37, 105-111.	2.0	24
104	Metal-catalyzed azide-alkyne "click―reactions: Mechanistic overview and recent trends. Coordination Chemistry Reviews, 2016, 316, 1-20.	9.5	271
105	Diblock metallocopolymers containing various iron sandwich complexes: living ROMP synthesis and selective reversible oxidation. Polymer Chemistry, 2016, 7, 2358-2371.	1.9	23
106	Redoxâ€Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Selfâ€Assembly of Pentamethylferricenium Polymerâ€Embedded Ag, AgI, and Au Nanoparticles. Chemistry - A European Journal, 2015, 21, 18177-18186.	1.7	32
107	The Golden Age of Transfer Hydrogenation. Chemical Reviews, 2015, 115, 6621-6686.	23.0	1,436
108	On the Redox Chemistry of Ferrocenes and Other Iron Sandwich Complexes and Its Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 330-338.	1.9	11

#	Article	IF	CITATIONS
109	Synthesis and Redox Activity of "Clicked―Triazolylbiferrocenyl Polymers, Network Encapsulation of Gold and Silver Nanoparticles and Anion Sensing. Inorganic Chemistry, 2015, 54, 2284-2299.	1.9	16
110	Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews, 2015, 287, 114-136.	9.5	657
111	Alkynylâ€Functionalized Imidazolium for "Click―Dendrimer Functionalisation and Palladium Nanoparticle Stabilization. European Journal of Inorganic Chemistry, 2015, 2015, 1345-1350.	1.0	7
112	Catalytically-Active Palladium Nanoparticles Stabilized by Triazolylbiferrocenyl-Containing Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 437-446.	1.9	7
113	Magnetic and Dendritic Catalysts. Accounts of Chemical Research, 2015, 48, 1871-1880.	7.6	109
114	Reaction mechanisms of transition-metal-catalyzed azide–alkyne cycloaddition "click―reactions: A DFT investigation. Computational and Theoretical Chemistry, 2015, 1073, 131-138.	1.1	9
115	ROMP Synthesis and Redox Properties of Polycationic Metallopolymers Containing the Electron-Reservoir Complex [Fe(η ⁵ -C ₅ H ₅)(η ⁶ -C ₆ Me ₆)][PF <sub Macromolecules, 2015, 48, 6071-6076.</sub 	⊳°c²/sub>]. ³⁰
116	Robust, Efficient, and Recyclable Catalysts from the Impregnation of Preformed Dendrimers Containing Palladium Nanoparticles on a Magnetic Support. ChemCatChem, 2015, 7, 303-308.	1.8	41
117	Efficient and Magnetically Recoverable "Click―PEGylated γâ€Fe ₂ O ₃ –Pd Nanoparticle Catalysts for Suzuki–Miyaura, Sonogashira, and Heck Reactions with Positive Dendritic Effects. Chemistry - A European Journal, 2015, 21, 1508-1519.	1.7	62
118	Tunneling Dendrimers. Enhancing Charge Transport through Insulating Layer Using Redox Molecular Objects. Journal of the American Chemical Society, 2014, 136, 17950-17953.	6.6	28
119	"Click―Assemblies and Redox Properties of Arene- and Gold-Nanoparticle-Cored Triazolylbiferrocene-Terminated Dendrimers. Organometallics, 2014, 33, 6953-6962.	1.1	16
120	Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angewandte Chemie - International Edition, 2014, 53, 1756-1789.	7.2	793
121	A Highly Active and Magnetically Recoverable Tris(triazolyl)–Cu ^I Catalyst for Alkyne–Azide Cycloaddition Reactions. Chemistry - A European Journal, 2014, 20, 4047-4054.	1.7	73
122	Catalysis by 1,2,3-triazole- and related transition-metal complexes. Coordination Chemistry Reviews, 2014, 272, 145-165.	9.5	148
123	Multifunctional Redox Polymers: Electrochrome, Polyelectrolyte, Sensor, Electrode Modifier, Nanoparticle Stabilizer, and Catalyst Template. Angewandte Chemie - International Edition, 2014, 53, 8445-8449.	7.2	51
124	"Click―Chemistry Mildly Stabilizes Bifunctional Gold Nanoparticles for Sensing and Catalysis. Chemistry - A European Journal, 2014, 20, 8363-8369.	1.7	30
125	"Homeopathic―Palladium Nanoparticle Catalysis of Cross Carbon–Carbon Coupling Reactions. Accounts of Chemical Research, 2014, 47, 494-503.	7.6	306
126	Stabilization of AuNPs by Monofunctional Triazole Linked to Ferrocene, Ferricenium, or Coumarin and Applications to Synthesis, Sensing, and Catalysis. Inorganic Chemistry, 2014, 53, 11802-11808.	1.9	28

#	Article	IF	CITATIONS
127	Metallodendrimers in three oxidation states with electronically interacting metals and stabilization of size-selected gold nanoparticles. Nature Communications, 2014, 5, 3489.	5.8	42
128	Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chemical Society Reviews, 2014, 43, 7188-7216.	18.7	508
129	Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chemical Communications, 2014, 50, 14194-14196.	2.2	228
130	Recyclable Catalytic Dendrimer Nanoreactor for Part-Per-Million Cu ^I Catalysis of "Click― Chemistry in Water. Journal of the American Chemical Society, 2014, 136, 12092-12098.	6.6	219
131	Living Ring-Opening Metathesis–Polymerization Synthesis and Redox-Sensing Properties of Norbornene Polymers and Copolymers Containing Ferrocenyl and Tetraethylene Glycol Groups. Organometallics, 2014, 33, 4323-4335.	1.1	39
132	"Click―Dendrimerâ€5tabilized Palladium Nanoparticles as a Green Catalyst Down to Parts per Million for Efficient CC Crossâ€Coupling Reactions and Reduction of 4â€Nitrophenol. Advanced Synthesis and Catalysis, 2014, 356, 2525-2538.	2.1	82
133	Mixed-Valent Click Intertwined Polymer Units Containing Biferrocenium Chloride Side Chains Form Nanosnakes that Encapsulate Gold Nanoparticles. Journal of the American Chemical Society, 2014, 136, 13995-13998.	6.6	44
134	Gold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chemical Communications, 2014, 50, 10126-10129.	2.2	101
135	ROMP Synthesis of Cobalticenium–Enamine Polyelectrolytes. Macromolecules, 2014, 47, 3767-3774.	2.2	36
136	Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chemical Reviews, 2014, 114, 6949-6985.	23.0	693
137	"Click―Synthesis of Nona-PEG-branched Triazole Dendrimers and Stabilization of Gold Nanoparticles That Efficiently Catalyze <i>p</i> -Nitrophenol Reduction. Inorganic Chemistry, 2014, 53, 6954-6961.	1.9	49
138	Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis. Molecules, 2014, 19, 4635-4653.	1.7	27
139	"Click―dendrimers as efficient nanoreactors in aqueous solvent: Pd nanoparticle stabilization for sub-ppm Pd catalysis of Suzuki–Miyaura reactions of aryl bromides. Chemical Communications, 2013, 49, 8169.	2.2	68
140	A recyclable ruthenium(ii) complex supported on magnetic nanoparticles: a regioselective catalyst for alkyne–azide cycloaddition. Chemical Communications, 2013, 49, 6956.	2.2	60
141	Metathesis Reactions: Recent Trends and Challenges. European Journal of Inorganic Chemistry, 2013, 2013, 4881-4908.	1.0	106
142	Efficient Clickâ€Polymerâ€Stabilized Palladium Nanoparticle Catalysts for Suzuki–Miyaura Reactions of Bromoarenes and Reduction of 4â€Nitrophenol in Aqueous Solvents. Advanced Synthesis and Catalysis, 2013, 355, 2992-3001.	2.1	29
143	The Clicked Pyridylâ€Triazole Ligand: From Homogeneous to Robust, Recyclable Heterogeneous Mono― and Polymetallic Palladium Catalysts for Efficient Suzuki–Miyaura, Sonogashira, and Heck Reactions. Advanced Synthesis and Catalysis, 2013, 355, 129-142.	2.1	66
144	How a simple "clicked―PEGylated 1,2,3-triazole ligand stabilizes gold nanoparticles for multiple usage. Chemical Communications, 2013, 49, 3218.	2.2	33

#	Article	IF	CITATIONS
145	State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews, 2013, 257, 638-665.	9.5	766
146	â€~Click' Synthesis and Redox Properties of Triazolyl Cobalticinium Dendrimers. Inorganic Chemistry, 2013, 52, 6685-6693.	1.9	33
147	Dendritic catalysis—Basic concepts and recent trends. Coordination Chemistry Reviews, 2013, 257, 2317-2334.	9.5	118
148	Encapsulation of Water-soluble Vitamins by Gold Nanoparticles in Hydrophobic Media. Chemistry Letters, 2012, 41, 1107-1109.	0.7	3
149	Click Dendrimers and Triazole-Related Aspects: Catalysts, Mechanism, Synthesis, and Functions. A Bridge between Dendritic Architectures and Nanomaterials. Accounts of Chemical Research, 2012, 45, 630-640.	7.6	310
150	Click Synthesis and Redox Chemistry of Mono- and Heterobimetallic Triazolyl and Triazolium-Ferrocene and Cobalticinium Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 5071-5077.	1.0	17
151	Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chemical Society Reviews, 2012, 41, 242-257.	18.7	251
152	Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nature Chemistry, 2012, 4, 255-267.	6.6	275
153	Docetaxel Nanotechnology in Anticancer Therapy. ChemMedChem, 2012, 7, 952-972.	1.6	100
154	Ferrocenyl-Terminated Redox Stars: Synthesis and Electrostatic Effects in Mixed-Valence Stabilization. Journal of the American Chemical Society, 2011, 133, 629-641.	6.6	137
155	The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click―reaction and its applications. An overview. Coordination Chemistry Reviews, 2011, 255, 2933-2945.	9.5	853
156	The Efficient Copper(I) (Hexabenzyl)tren Catalyst and Dendritic Analogues for Green "Click―Reactions between Azides and Alkynes in Organic Solvent and in Water: Positive Dendritic Effects and Monometallic Mechanism. Advanced Synthesis and Catalysis, 2011, 353, 3434-3450.	2.1	62
157	Encapsulation of Docetaxel into PEGylated Gold Nanoparticles for Vectorization to Cancer Cells. ChemMedChem, 2011, 6, 2003-2008.	1.6	37
158	Encapsulation and Stabilization of Gold Nanoparticles with "Click―Polyethyleneglycol Dendrimers. Journal of the American Chemical Society, 2010, 132, 2729-2742.	6.6	157
159	Dendrimerâ€Induced Molecular Catalysis in Water: The Example of Olefin Metathesis. Chemistry - A European Journal, 2010, 16, 11832-11835.	1.7	54
160	Click Syntheses of 1,2,3â€Triazolylbiferrocenyl Dendrimers and the Selective Roles of the Inner and Outer Ferrocenyl Groups in the Redox Recognition of ATP ^{2â~} and Pd ²⁺ . Angewandte Chemie - International Edition, 2010, 49, 8152-8156.	7.2	87
161	Palladium catalysis using dendrimers: molecular catalysts versus nanoparticles. Tetrahedron: Asymmetry, 2010, 21, 1041-1054.	1.8	102
162	Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chemical Reviews, 2010, 110, 1857-1959.	23.0	1,697

#	Article	IF	CITATIONS
163	Branching the Electron-Reservoir Complex [Fe(η ⁵ -C ₅ H ₅)(η ⁶ -C ₆ Me ₆)][PF <su onto Large Dendrimers: "Clickâ€; Amide, and Ionic Bonds. Inorganic Chemistry, 2010, 49, 6085-6101.</su 	b> £ 9/sub	>] 33
164	How Do Redox Groups Behave around a Rigid Molecular Platform? Hexa(ferrocenylethynyl)benzenes and Their "Electrostatic―Redox Chemistry. Angewandte Chemie - International Edition, 2009, 48, 3141-3145.	7.2	110
165	Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 2009, 38, 1759.	18.7	2,518
166	Giant Dendritic Molecular Electrochrome Batteries with Ferrocenyl and Pentamethylferrocenyl Termini. Journal of the American Chemical Society, 2009, 131, 590-601.	6.6	174
167	Electronic Communication between Immobilized Ferrocenyl-Terminated Dendrimers. Journal of the American Chemical Society, 2009, 131, 6652-6653.	6.6	58
168	Giant Cobalticinium Dendrimers. Organometallics, 2009, 28, 2716-2723.	1.1	46
169	Ferrocenyl dendronized polymers. New Journal of Chemistry, 2009, 33, 246.	1.4	17
170	"Click―Dendrimers: Synthesis, Redox Sensing of Pd(OAc) ₂ , and Remarkable Catalytic Hydrogenation Activity of Precise Pd Nanoparticles Stabilized by 1,2,3â€Triazoleâ€Containing Dendrimers. Chemistry - A European Journal, 2008, 14, 50-64.	1.7	188
171	Four Generations of Waterâ€Soluble Dendrimers with 9 to 243 Benzoate Tethers: Synthesis and Dendritic Effects on Their Ion Pairing with Acetylcholine, Benzyltriethylammonium, and Dopamine in Water. Chemistry - A European Journal, 2008, 14, 5577-5587.	1.7	50
172	Metallocenyl Dendrimers and Their Applications in Molecular Electronics, Sensing, and Catalysis. Accounts of Chemical Research, 2008, 41, 841-856.	7.6	278
173	How to very efficiently functionalize gold nanoparticles by "click―chemistry. Chemical Communications, 2008, , 5788.	2.2	99
174	Synthesis and Coordination Chemistry of Ferrocenyl-1,2,3-triazolyl Ligands. Inorganic Chemistry, 2008, 47, 4903-4908.	1.9	98
175	A highly active and reusable copper(<scp>i</scp>)-tren catalyst for the "click―1,3-dipolar cycloaddition of azides and alkynes. Chemical Communications, 2008, , 741-743.	2.2	211
176	Cross Olefin Metathesis for the Selective Functionalization, Ferrocenylation, and Solubilization in Water of Olefin-Terminated Dendrimers, Polymers, and Gold Nanoparticles and for a Divergent Dendrimer Construction. Journal of the American Chemical Society, 2008, 130, 1495-1506.	6.6	74
177	Organometallic Electron-Reservoir Complexes. Concepts and Applications. Bulletin of the Chemical Society of Japan, 2007, 80, 1658-1671.	2.0	24
178	Catalytically efficient palladium nanoparticles stabilized by "click―ferrocenyl dendrimers. Chemical Communications, 2007, , 4946.	2.2	96
179	New water-soluble polyanionic dendrimers and binding to acetylcholine in water by means of contact ion-pairing interactions. Chemical Communications, 2007, , 5093.	2.2	30
180	Palladium Nanoparticles as Efficient Green Homogeneous and Heterogeneous Carbonâ^'Carbon Coupling Precatalysts:Â A Unifying View. Inorganic Chemistry, 2007, 46, 1884-1894.	1.9	739

#	Article	IF	CITATIONS
181	Click Assembly of 1,2,3-Triazole-Linked Dendrimers, Including Ferrocenyl Dendrimers, Which Sense Both Oxo Anions and Metal Cations. Angewandte Chemie - International Edition, 2007, 46, 872-877.	7.2	333
182	"Homeopathic―Catalytic Activity and Atom‣eaching Mechanism in Miyaura–Suzuki Reactions under Ambient Conditions with Precise Dendrimer‣tabilized Pd Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 8644-8648.	7.2	306
183	Metallocenes as references for the determination of redox potentials by cyclic voltammetry — Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes. Canadian Journal of Chemistry, 2006, 84, 288-299.	0.6	280
184	Use of an Electron-Reservoir Complex Together with Air to Generate N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2006, 128, 5602-5603.	6.6	40
185	Assembly of Dendrimers with Redox-Active [{CpFe(μ3-CO)}4] Clusters at the Periphery and Their Application to Oxo-Anion and Adenosine-5′-Triphosphate Sensing. Angewandte Chemie - International Edition, 2006, 45, 132-136.	7.2	63
186	Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2005, 44, 7852-7872.	7.2	2,848
187	Metallodendritic Catalysis for Redox and CarbonCarbon Bond Formation Reactions: A Step towards Green Chemistry Advanced Synthesis and Catalysis, 2005, 347, 329-338.	2.1	108
188	Palladium–dodecanethiolate nanoparticles as stable and recyclable catalysts for the Suzuki–Miyaura reaction of aryl halides under ambient conditions. Tetrahedron Letters, 2004, 45, 9443-9445.	0.7	121
189	Gold Nanoparticles:Â Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 2004, 104, 293-346.	23.0	11,940
190	Synthesis of Five Generations of Redox-Stable Pentamethylamidoferrocenyl Dendrimers and Comparison of Amidoferrocenyl- and Pentamethylamidoferrocenyl Dendrimers as Electrochemical Exoreceptors for the Selective Recognition of H2PO4â [^] , HSO4â [^] , and Adenosine 5â€ ² -Triphosphate (ATP) Anions: Stereoelectronic and Hydrophobic Roles of Cyclopentadienyl Permethylation. Chemistry - A	1.7	102
191	European Journal, 2003, 9, 4371-4379. Supramolecular H-Bonded Assemblies of Redox-Active Metallodendrimers and Positive and Unusual Dendritic Effects on the Recognition of H2PO4 Journal of the American Chemical Society, 2003, 125, 1150-1151.	6.6	112
192	Nanoscopic Assemblies between Supramolecular Redox Active Metallodendrons and Gold Nanoparticles:Â Synthesis, Characterization, and Selective Recognition of H2PO4-, HSO4-, and Adenosine-5'-Triphosphate (ATP2-) Anions. Journal of the American Chemical Society, 2003, 125, 2617-2628.	6.6	220
193	Construction of Giant Dendrimers Using a Tripodal Building Block. Journal of the American Chemical Society, 2003, 125, 7250-7257.	6.6	121
194	Supramolecular Gold Nanoparticles for the Redox Recognition of Oxoanions:  Syntheses, Titrations, Stereoelectronic Effects, and Selectivity. Journal of the American Chemical Society, 2002, 124, 1782-1789.	6.6	196
195	Water-soluble mono- and star-shaped hexanuclear functional organo-iron catalysts for nitrate and nitrite reduction in water: syntheses and electroanalytical study. Inorganica Chimica Acta, 2002, 334, 225-242.	1.2	37
196	Dendritic Catalysts and Dendrimers in Catalysis. Chemical Reviews, 2001, 101, 2991-3024.	23.0	1,033
197	Ferrocenylsilylation of dendrons: a fast convergent route to redox-stable ferrocene dendrimers. Chemical Communications, 2000, , 417-418.	2.2	97
198	A Polycationic Metallodendrimer with 24 [Fe(î·5-C5Me5)(î·6-N-Alkylaniline)]+ Termini That Recognizes Chloride and Bromide Anions. Angewandte Chemie - International Edition, 1999, 38, 1747-1751.	7.2	111

#	Article	IF	CITATIONS
199	Organoiron Route to a New Dendron for Fast Dendritic Syntheses Using Divergent and Convergent Methods. Journal of the American Chemical Society, 1999, 121, 2929-2930.	6.6	113
200	First 17â^'18â^'19-Electron Triads of Stable Isostructural Organometallic Complexes. The 17-Electron Complexes [Fe(C5R5)(arene)]2+(R = H or Me), a Novel Family of Strong Oxidants:Â Isolation, Characterization, Electronic Structure, and Redox Properties. Journal of the American Chemical Society, 1998, 120, 11693-11705.	6.6	57
201	Triple Câ^'H/Nâ^'H Activation by O2 for Molecular Engineering:  Heterobifunctionalization of the 19-Electron Redox Catalysts FeICp(arene). Journal of the American Chemical Society, 1997, 119, 11132-11133.	6.6	56
202	The Dendritic Effect in Molecular Recognition:  Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions. Journal of the American Chemical Society, 1997, 119, 2588-2589.	6.6	433
203	Electron-Reservoir Complexes[FelCp(arene)] as Selective Initiators for a Novel Electron Transfer Chain Catalyzed Reaction: General Synthesis of Fulvalene-Bridged Homo- and Heterodinuclear Zwitterions. Angewandte Chemie International Edition in English, 1994, 33, 661-663.	4.4	33
204	Elektronenreservoirkomplexe [Fe _I Cp(Aren)] als selektive Initiatoren für eine neue Elektrokatalysereaktion: Synthese fulvalenverbrückter homo―und heterozweikerniger Zwitterionen,. Angewandte Chemie, 1994, 106, 715-717.	1.6	10
205	Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+-Induced Nonaallylation of Mesitylene and Phase-Transfer Catalyzed Synthesis of a Redox-Active Nonairon Complex. Angewandte Chemie International Edition in English, 1993, 32, 1075-1077.	4.4	136
206	One-, two- and three-electron reduction of C60using the electron-reservoir complex [FeI(C5H5)(C6Me6)]. Journal of the Chemical Society Chemical Communications, 1993, , 333-334.	2.0	84
207	Salt effects resulting from exchange between two ion pairs and their crucial role in reaction. Chemical Reviews, 1992, 92, 1141-1165.	23.0	117
208	One-Pot Multifunctionalization of Polymethyl Hydrocarbonπ Ligands. Maximum Space Occupancy by Double Branching and Formation of Arboroles. Angewandte Chemie International Edition in English, 1992, 31, 458-460.	4.4	66
209	Arene exchange by phosphorus donors in the 19-electron complexes FeICp(arene): kinetics, mechanism, and salt effects. Interconversion, radical-type reactions, and electron-transfer chemistry of the new 17-electron and 19-electron radicals FeICpLn (L = phosphine, phosphite; n = 2, 3). Journal of the American Chemical Society, 1990, 112, 5471-5483.	6.6	79
210	Chiral pentaisopropylcyclopentadienyl and pentakis(1-ethylpropyl)cyclopentadienyl complexes: one-pot synthesis by formation of 10 carbon-carbon bonds from pentamethylcobalticinium. Journal of the American Chemical Society, 1990, 112, 4607-4609.	6.6	87
211	Organometallic electron reservoirs. Part 36. Binuclear electron reservoir complexes. Syntheses, reactivity, and electronic structure of the 37- and 38-electron fulvalene complexes. Journal of the American Chemical Society, 1989, 111, 5800-5809.	6.6	85
212	Reduction of CO2by the 19 electron complexes FeI(cp)L3[cp =η5-cyclopentadienyl; L3= C6H6, C6Me6, or (PMe3)3]. Journal of the Chemical Society Chemical Communications, 1989, , 812-813.	2.0	11
213	Electron-Transfer Chain Catalysis in Organotransition Metal Chemistry. Angewandte Chemie International Edition in English, 1988, 27, 643-660.	4.4	108
214	Tentacled Iron Sandwiches. Angewandte Chemie International Edition in English, 1988, 27, 1347-1349.	4.4	74
215	Organodiiron electron reservoir complexes containing a polyaromatic ligand: syntheses, stabilization, delocalized mixed valences, and intramolecular coupling. Journal of the American Chemical Society, 1987, 109, 6504-6506.	6.6	72
216	Organoiron electron-reservoir complexes. Accounts of Chemical Research, 1986, 19, 377-383.	7.6	140

#	Article	IF	CITATIONS
217	The use of ferrocene in organometallic synthesis: A two-step preparation of cyclopentadienyliron acetonitrile and phosphine cations via photolysis of cyclopentadienyliron tricarbonyl or arene cations. Journal of Organometallic Chemistry, 1984, 272, 417-426.	0.8	78
218	Electron-transfer chemistry of the 20-electron complex bis(hexamethylbenzene)iron(0) [(.eta.6-C6Me6)2Fe(0)] and its strategic role in carbon-hydrogen bond activation and carbon-carbon bond formation. Journal of the American Chemical Society, 1984, 106, 2437-2439.	6.6	64
219	Organometallic electron reservoirs. 10. Dramatic salt effect on the basic and nucleophilic properties of the superoxide radical anion generated from oxygen (O2) and iron(I) electron-reservoir complexes. Journal of the American Chemical Society, 1983, 105, 5951-5952.	6.6	35
220	Photoelectron study of electron-rich iron(I) cyclopentadienyl arene complexes and of the related iron(II) cyclopentadienyl cyclohexadienyl complexes. Organometallics, 1983, 2, 211-218.	1.1	79
221	Organometallic electron reservoirs. 7. One-step multiple formation of carbon-carbon bonds in CpFe+(arene) sandwiches and unusual C6Et6 geometry in the x-ray crystal structure of CpFe+(.eta.6-C6Et6) PF6 Journal of the American Chemical Society, 1982, 104, 7549-7555.	6.6	102
222	Electron-transfer pathways in the reduction of d6 and d7 organoiron cations by lithium tetrahydroaluminate and sodium tetrahydroborate. Journal of the American Chemical Society, 1982, 104, 3755-3757.	6.6	73
223	Organometallic electron reservoirs. 5. Novel mode of carbon-hydrogen activation using dioxygen via superoxide radical anion in solution and in the solid state with C5R5FelC6R'6. Subsequent bond formation with carbon, silicon, phosphorus, manganese, iron, chromium, and molybdenum. Journal of the American Chemical Society. 1981, 103, 7502-7514.	6.6	102
224	.eta.5-Benzyl: crystal structure, nucleophilic properties, and electron-transfer reactions of CpFe(.eta.5-C6Me5CH2), an intermediate in carbon-hydrogen activation by oxygen via O2 Journal of the American Chemical Society, 1981, 103, 2431-2433.	6.6	55
225	Electrochemical reduction of î·5-cyclopentadienyl Fe+ î·6-arene cations in basic media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 121, 241-253.	0.3	63
226	Syntheses, characterizations, and stereoelectronic stabilization of organometallic electron reservoirs: the 19-electron d7 redox catalysts .eta.5-C5R5Feeta.6-C6R'6. Journal of the American Chemical Society, 1981, 103, 758-766.	6.6	216
227	Insertion of CO2 into the η5-C5H4-H bond during the ligand exhange between ferrocene and aenes : A one-step synthesis of he electrochemical catalysts η5-C5H4CO2â^'Fe+ η6-arene Tetrahedron Letters, 1979, 20, 1433-1436.	0.7	26
228	Design, stabilization, and efficiency of organometallic "electron reservoirs". 19-Electron sandwiches .eta.5-C5R5Feleta.6-C6R'6, a key class active in redox catalysis. Journal of the American Chemical Society, 1979, 101, 5445-5447.	6.6	118
229	Novel reactions of dioxygen in organometallic chemistry. Hydrogen atom abstraction vs. dimerization of the 19-electron complexes .eta.5-cyclopentadienyliron(I) .eta.6-arene. Journal of the American Chemical Society, 1979, 101, 2240-2242.	6.6	64
230	The Suzuki Reaction with Arylboron Compounds in Arene Chemistry. , 0, , 53-106.		50
231	Magnetized Biochar as a Gold Nanocatalyst Support for p-Nitrophenol Reduction. Journal of the Brazilian Chemical Society, 0, , .	0.6	0