
John S Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cation-Induced Assembly of Conductive MXene Fibers for Wearable Heater, Wireless Communication, and Stem Cell Differentiation. ACS Biomaterials Science and Engineering, 2023, 9, 2129-2139.	2.6	12
2	Reconfigurable Dual-Band Capsule-Conformal Antenna Array for In-Body Bioelectronics. IEEE Transactions on Antennas and Propagation, 2022, 70, 3749-3761.	3.1	17
3	Thermal Camouflaging MXene Robotic Skin with Bioâ€Inspired Stimulus Sensation and Wireless Communication. Advanced Functional Materials, 2022, 32, .	7.8	39
4	Electronic textiles for energy, sensing, and communication. IScience, 2022, 25, 104174.	1.9	30
5	Wirelessly Activated Nanotherapeutics for In Vivo Programmable Photodynamicâ€Chemotherapy of Orthotopic Bladder Cancer. Advanced Science, 2022, 9, e2200731.	5.6	12
6	Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 2022, 13, 2190.	5.8	87
7	Near-Reflectionless Wireless Transmission Into the Body With Cascaded Metasurfaces. IEEE Transactions on Antennas and Propagation, 2022, 70, 8379-8388.	3.1	4
8	Localized Surface Plasmons on Textiles for Non-Contact Vital Sign Sensing. IEEE Transactions on Antennas and Propagation, 2022, 70, 8507-8517.	3.1	10
9	Non-Contact Vital Sign Monitoring With a Metamaterial Surface. , 2022, , .		1
10	Wireless interfaces for brain neurotechnologies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	1
11	Microwave Metamaterials for Biomedical Sensing. , 2021, , .		2
12	Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. Physical Review Applied, 2021, 15, .	1.5	7
13	A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Science Advances, 2021, 7, .	4.7	106
14	Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems. ACS Nano, 2021, 15, 9328-9354.	7.3	53
15	Metasurfaces for bioelectronics and healthcare. Nature Electronics, 2021, 4, 382-391.	13.1	70
16	Wireless respiration monitoring using a flexible sensor and bistable circuit. , 2021, , .		1
17	Digitally-embroidered Liquid Metal Textiles for Near-field Wireless Body Sensor Networks. , 2021, , .		1
18	Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nature Biomedical Engineering, 2021, 5, 1217-1227.	11.6	47

#	Article	IF	CITATIONS
19	A wireless optoelectronic skin patch for light delivery and thermal monitoring. IScience, 2021, 24, 103284.	1.9	5
20	A wireless and battery-free wound infection sensor based on DNA hydrogel. Science Advances, 2021, 7, eabj1617.	4.7	68
21	A DIY approach to wearable sensor networks. Nature Electronics, 2021, 4, 771-772.	13.1	3
22	Heterogeneous multi-compartmental DNA hydrogel particles prepared via microfluidic assembly for lymphocyte-inspired precision medicine. Nanoscale, 2021, 13, 20531-20540.	2.8	3
23	Wearable Radio-frequency Plasmonic Resonance Sensor for Non-contact Vital Sign Monitoring. , 2021, , .		1
24	Wireless Propagation and Focusing into the Human Body with Wearable Metamaterials. , 2021, , .		0
25	A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nature Materials, 2020, 19, 182-188.	13.3	183
26	Reversible Crumpling of 2D Titanium Carbide (MXene) Nanocoatings for Stretchable Electromagnetic Shielding and Wearable Wireless Communication. Advanced Functional Materials, 2020, 30, 1907451.	7.8	155
27	Photodynamic Therapy: A Flexiâ€PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070219.	11.1	2
28	A 3-Mbps, 802.11g-Based EMG Recording System With Fully Implantable 5-Electrode EMGxbrk Acquisition Device. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 889-902.	2.7	10
29	Wireless Ti ₃ C ₂ T _{<i>x</i>} MXene Strain Sensor with Ultrahigh Sensitivity and Designated Working Windows for Soft Exoskeletons. ACS Nano, 2020, 14, 11860-11875.	7.3	99
30	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. Physical Review Letters, 2020, 125, 187403.	2.9	44
31	Antireflection and Wavefront Manipulation with Cascaded Metasurfaces. Physical Review Applied, 2020, 14, .	1.5	21
32	Conformal Propagation and Near-Omnidirectional Radiation With Surface Plasmonic Clothing. IEEE Transactions on Antennas and Propagation, 2020, 68, 7309-7319.	3.1	27
33	Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming. Nano Energy, 2020, 74, 104875.	8.2	57
34	Somatosensory, Lightâ€Driven, Thinâ€Film Robots Capable of Integrated Perception and Motility. Advanced Materials, 2020, 32, e2000351.	11.1	106
35	Wireless battery-free body sensor networks using near-field-enabled clothing. Nature Communications, 2020, 11, 444.	5.8	165
36	Wearable Wireless Propagation and Radiation Control With Metamaterial Textiles. , 2020, , .		0

#	Article	IF	CITATIONS
37	Near-field-enabled Clothing for Wearable Wireless Power Transfer. , 2020, , .		3
38	Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2, 335-342.	13.1	125
39	A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Science Robotics, 2019, 4, .	9.9	203
40	Biomimetic MXene Textures with Enhanced Lightâ€ŧoâ€Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Advanced Energy Materials, 2019, 9, 1901687.	10.2	210
41	Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 2019, 66, 104167.	8.2	117
42	Enhancing Wireless Transmission from the Body with Wearable Diffractive Patterns. Physical Review Applied, 2019, 12, .	1.5	7
43	Selfâ€Sustainable Wearable Textile Nanoâ€Energy Nanoâ€System (NENS) for Nextâ€Generation Healthcare Applications. Advanced Science, 2019, 6, 1901437.	5.6	179
44	Lightâ€toâ€Heat Conversion: Biomimetic MXene Textures with Enhanced Lightâ€toâ€Heat Conversion for Solar Steam Generation and Wearable Thermal Management (Adv. Energy Mater. 34/2019). Advanced Energy Materials, 2019, 9, 1970141.	10.2	43
45	Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Science Robotics, 2019, 4, .	9.9	53
46	Robust and High-Efficiency Wireless Body Area Networks with Spoof Surface Plasmons on Clothing. , 2019, , .		3
47	Wireless body sensor networks based on metamaterial textiles. Nature Electronics, 2019, 2, 243-251.	13.1	276
48	A Wireless Multi-Channel Peripheral Nerve Signal Acquisition System-on-Chip. IEEE Journal of Solid-State Circuits, 2019, 54, 2266-2280.	3.5	30
49	Wireless Power Transfer for Glioblastoma Photodynamic Therapy. , 2019, , .		4
50	Energy-efficient and Secure Wireless Body Sensor Networks with Metamaterial Textiles. , 2019, , .		6
51	In vivo wireless photonic photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1469-1474.	3.3	152
52	Enhancing Wireless Transmission from Implanted Devices with an Electromagnetic Grating. , 2018, , .		0
53	Wireless Light Delivery for Photodynamic Therapy. , 2018, , .		0
54	Batteryless Pelvic Nerve Direct Modulation for Bladder Voding Using an Active Neural Clip. , 2018, , .		3

#	Article	lF	CITATIONS
55	Methods for powering bioelectronic microdevices. Bioelectronics in Medicine, 2018, 1, 201-217.	2.0	15
56	Control of wireless power transfer to a bioelectronic device by harmonic feedback. AIP Advances, 2018, 8, .	0.6	3
57	Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nature Biomedical Engineering, 2017, 1, .	11.6	137
58	A General Strategy for Stretchable Microwave Antenna Systems using Serpentine Mesh Layouts. Advanced Functional Materials, 2017, 27, 1703059.	7.8	43
59	Toward Bioelectronic Medicine—Neuromodulation of Small Peripheral Nerves Using Flexible Neural Clip. Advanced Science, 2017, 4, 1700149.	5.6	76
60	Enhanced Electromagnetic Energy Harvesting with Subwavelength Chiral Structures. Physical Review Applied, 2017, 8, .	1.5	5
61	NON-COIL, OPTIMAL SOURCES FOR WIRELESS POWERING OF SUB-MILLIMETER IMPLANTABLE DEVICES. Progress in Electromagnetics Research, 2017, 158, 99-108.	1.6	2
62	Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS ONE, 2017, 12, e0179642.	1.1	30
63	High-performance wireless powering for peripheral nerve neuromodulation systems. PLoS ONE, 2017, 12, e0186698.	1.1	47
64	Microwave to near-infrared conversion with a millimeter-scale wireless laser for activating molecular transducers. , 2016, 2016, 352-354.		1
65	Conformai microwave lens for focusing across inhomogenous tissue. , 2016, , .		1
66	Fully internal, wirelessly powered systems for optogenetics. , 2016, , .		3
67	Planar immersion lens with metasurfaces. Physical Review B, 2015, 91, .	1.1	34
68	Self-Tracking Energy Transfer for Neural Stimulation in Untethered Mice. Physical Review Applied, 2015, 4, .	1.5	41
69	Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nature Methods, 2015, 12, 969-974.	9.0	473
70	ENERGY TRANSFER FOR IMPLANTABLE ELECTRONICS IN THE ELECTROMAGNETIC MIDFIELD (Invited Paper). Progress in Electromagnetics Research, 2014, 148, 151-158.	1.6	16
71	Optical probe for input-impedance measurement of in vivo power-receiving microstructure. , 2014, , .		3
72	Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7974-7979.	3.3	399

#	Article	IF	CITATIONS
73	Midfield Wireless Powering for Implantable Systems. Proceedings of the IEEE, 2013, 101, 1369-1378.	16.4	178
74	Midfield Wireless Powering of Subwavelength Autonomous Devices. Physical Review Letters, 2013, 110, 203905.	2.9	92
75	Wirelessly powering miniature implants for optogenetic stimulation. Applied Physics Letters, 2013, 103,	1.5	41
76	10.1063/1.4825272.1., 2013, , .		0
77	Wireless powering of microchip implants by a cross-slot antenna. , 2012, , .		1
78	Wireless power transfer to a cardiac implant. Applied Physics Letters, 2012, 101, 073701.	1.5	116
79	Wireless Power Transfer to Miniature Implants: Transmitter Optimization. IEEE Transactions on Antennas and Propagation, 2012, 60, 4838-4845.	3.1	105
80	Inter-channel demosaicking traces for digital image forensics. , 2010, , .		13