Michael Boutros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921418/publications.pdf

Version: 2024-02-01

228 papers

23,575 citations

68 h-index 9103

259 all docs

259 docs citations

times ranked

259

34222 citing authors

g-index

#	Article	IF	CITATIONS
1	Wnt signaling in cancer. Oncogene, 2017, 36, 1461-1473.	5.9	1,975
2	REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 1995, 80, 949-957.	28.9	1,034
3	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	12.6	979
4	The Promise and Perils of Wnt Signaling Through beta -Catenin. Science, 2002, 296, 1644-1646.	12.6	937
5	Active Wnt proteins are secreted on exosomes. Nature Cell Biology, 2012, 14, 1036-1045.	10.3	809
6	Dishevelled Activates JNK and Discriminates between JNK Pathways in Planar Polarity and wingless Signaling. Cell, 1998, 94, 109-118.	28.9	730
7	E-CRISP: fast CRISPR target site identification. Nature Methods, 2014, 11, 122-123.	19.0	719
8	Genome-Wide RNAi Analysis of Growth and Viability in <i>Drosophila</i> Cells. Science, 2004, 303, 832-835.	12.6	675
9	EBImageâ€"an R package for image processing with applications to cellular phenotypes. Bioinformatics, 2010, 26, 979-981.	4.1	616
10	Requirement of Prorenin Receptor and Vacuolar H ⁺ -ATPase–Mediated Acidification for Wnt Signaling. Science, 2010, 327, 459-463.	12.6	514
11	Secretion of Wnt Ligands Requires Evi, a Conserved Transmembrane Protein. Cell, 2006, 125, 523-533.	28.9	505
12	LGR4 and LGR5 are Râ€spondin receptors mediating Wnt/βâ€catenin and Wnt/PCP signalling. EMBO Reports, 2011, 12, 1055-1061.	4.5	497
13	Sequential Activation of Signaling Pathways during Innate Immune Responses in Drosophila. Developmental Cell, 2002, 3, 711-722.	7.0	441
14	Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods, 2006, 3, 777-779.	19.0	417
15	The art and design of genetic screens: RNA interference. Nature Reviews Genetics, 2008, 9, 554-566.	16.3	413
16	Signaling Role of Hemocytes in Drosophila JAK/STAT-Dependent Response to Septic Injury. Developmental Cell, 2003, 5, 441-450.	7.0	403
17	Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology, 2005, 6, R16.	9.6	318
18	Microscopy-Based High-Content Screening. Cell, 2015, 163, 1314-1325.	28.9	312

#	Article	IF	CITATIONS
19	Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature, 2005, 436, 871-875.	27.8	275
20	Analysis of cell-based RNAi screens. Genome Biology, 2006, 7, R66.	9.6	271
21	Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mechanisms of Development, 1999, 83, 27-37.	1.7	255
22	Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes and Development, 2007, 21, 2558-2570.	5.9	247
23	Cell Cycle Control of Wnt Receptor Activation. Developmental Cell, 2009, 17, 788-799.	7.0	238
24	Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. Journal of Extracellular Vesicles, 2017, 6, 1378056.	12.2	237
25	Akirins are highly conserved nuclear proteins required for NF-κB-dependent gene expression in drosophila and mice. Nature Immunology, 2008, 9, 97-104.	14.5	223
26	Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 2013, 4, 2610.	12.8	213
27	CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology, 2019, 55, 106-119.	9.6	206
28	Control of Proinflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20. Molecular Cell, 2012, 48, 28-38.	9.7	193
29	Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nature Methods, 2011, 8, 341-346.	19.0	173
30	Smed-Evi/Wntless is required for \hat{l}^2 -catenin-dependent and-independent processes during planarian regeneration. Development (Cambridge), 2009, 136, 905-910.	2.5	164
31	Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature Cell Biology, 2009, 11, 286-294.	10.3	160
32	Proteins Required for Centrosome Clustering in Cancer Cells. Science Translational Medicine, 2010, 2, 33ra38.	12.4	152
33	A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood, 2015, 125, 2265-2275.	1.4	144
34	Clustering phenotype populations by genomeâ€wide RNAi and multiparametric imaging. Molecular Systems Biology, 2010, 6, 370.	7.2	141
35	A Combined Ex Vivo and In Vivo RNAi Screen for Notch Regulators in Drosophila Reveals an Extensive Notch Interaction Network. Developmental Cell, 2010, 18, 862-876.	7.0	139
36	E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update. Nucleic Acids Research, 2010, 38, W332-W339.	14.5	136

3

#	Article	IF	CITATIONS
37	GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Research, 2013, 41, D1021-D1026.	14.5	135
38	Endothelial RSPO3 Controls Vascular Stability and Pruning through Non-canonical WNT/Ca 2+ /NFAT Signaling. Developmental Cell, 2016, 36, 79-93.	7.0	133
39	SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications Biology, 2022, 5, 45.	4.4	133
40	Pooled InÂVitro and InÂVivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids. Cell Stem Cell, 2020, 26, 782-792.e7.	11.1	131
41	Machine learning and image-based profiling in drug discovery. Current Opinion in Systems Biology, 2018, 10, 43-52.	2.6	128
42	MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nature Communications, 2019, 10, 2197.	12.8	126
43	An RNA interference screen ide.jpgies <i>Inhibitor of Apoptosis Protein 2</i> as a regulator of innate immune signalling in <i>Drosophila</i> EMBO Reports, 2005, 6, 979-984.	4.5	123
44	Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. Nature Methods, 2013, 10, 427-431.	19.0	122
45	Signaling Specificity by Frizzled Receptors in Drosophila. Science, 2000, 288, 1825-1828.	12.6	116
46	Wnt/Frizzled Signaling Requires dPRR, the Drosophila Homolog of the Prorenin Receptor. Current Biology, 2010, 20, 1263-1268.	3.9	115
47	A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila. ELife, 2020, 9, .	6.0	115
48	An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biology, 2003, 5, R3.	9.6	113
49	SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression. Blood, 2010, 115, 2657-2665.	1.4	112
50	Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development (Cambridge), 2014, 141, 1757-1766.	2.5	111
51	The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Developmental Cell, 2018, 45, 132-145.e3.	7.0	111
52	The Long Noncoding RNA Cancer Susceptibility 9 and RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein L Form a Complex and Coregulate Genes Linked to AKT Signaling. Hepatology, 2018, 68, 1817-1832.	7.3	110
53	The head-regeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biology, 2011, 12, R76.	9.6	109
54	<i>Drosophila</i> Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells. EMBO Journal, 2011, 30, 1123-1136.	7.8	109

#	Article	IF	CITATIONS
55	Identification of SUMO-Dependent Chromatin-Associated Transcriptional Repression Components by a Genome-wide RNAi Screen. Molecular Cell, 2008, 29, 742-754.	9.7	100
56	ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO Journal, 2011, 30, 3684-3700.	7.8	100
57	The Drosophila STE20-like kinase Misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO Journal, 1999, 18, 4669-4678.	7.8	98
58	Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO Journal, 2010, 29, 3344-3357.	7.8	97
59	Regulation of Wnt protein secretion and its role in gradient formation. EMBO Reports, 2008, 9, 977-982.	4.5	94
60	Mapping of Wntâ€Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB Journal, 2017, 31, 4832-4844.	0.5	92
61	Ageing, metabolism and the intestine. EMBO Reports, 2020, 21, e50047.	4.5	92
62	Genomic mapping of binding regions for the Ecdysone receptor protein complex. Genome Research, 2009, 19, 1006-1013.	5.5	90
63	RNA Interference (RNAi) Screening in <i>Drosophila</i> . Genetics, 2018, 208, 853-874.	2.9	90
64	REPTOR and REPTOR-BP Regulate Organismal Metabolism and Transcription Downstream of TORC1. Developmental Cell, 2015, 33, 272-284.	7.0	86
65	FlyRNAi: the Drosophila RNAi screening center database. Nucleic Acids Research, 2006, 34, D489-D494.	14.5	85
66	The IncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Research, 2017, 45, 5458-5469.	14.5	84
67	p24 proteins are required for secretion of Wnt ligands. EMBO Reports, 2011, 12, 1265-1272.	4.5	81
68	The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis. EMBO Molecular Medicine, 2012, 4, 38-51.	6.9	81
69	E-RNAi: a web application to design optimized RNAi constructs. Nucleic Acids Research, 2005, 33, W582-W588.	14.5	79
70	A chemical–genetic interaction map of small molecules using highâ€throughput imaging in cancer cells. Molecular Systems Biology, 2015, 11, 846.	7.2	79
71	A map of directional genetic interactions in a metazoan cell. ELife, 2015, 4, .	6.0	78
72	The Sin3a repressor complex is a master regulator of STAT transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12058-12063.	7.1	74

#	Article	IF	CITATIONS
73	Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology, 2018, 68, 707-722.	7.3	73
74	The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. Journal of Cell Biology, 2013, 200, 505-522.	5.2	71
75	Design and evaluation of genome-wide libraries for RNA interference screens. Genome Biology, 2010, 11, R61.	9.6	69
76	CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biology, 2016, 17, 55.	8.8	68
77	High-Throughput RNA Interference Screens in Drosophila Tissue Culture Cells. Methods in Enzymology, 2005, 392, 55-73.	1.0	67
78	Cytokine Diedel and a viral homologue suppress the IMD pathway in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 698-703.	7.1	67
79	RAB8B Is Required for Activity and Caveolar Endocytosis of LRP6. Cell Reports, 2013, 4, 1224-1234.	6.4	65
80	Dpp/Gbb signaling is required for normal intestinal regeneration during infection. Developmental Biology, 2015, 399, 189-203.	2.0	65
81	GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens. Nucleic Acids Research, 2017, 45, D679-D686.	14.5	65
82	Toward an integrated map of genetic interactions in cancer cells. Molecular Systems Biology, 2018, 14, e7656.	7.2	64
83	Gut Microbiota-Derived Propionate Regulates the Expression of Reg3 Mucosal Lectins and Ameliorates Experimental Colitis in Mice. Journal of Crohn's and Colitis, 2020, 14, 1462-1472.	1.3	63
84	Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling. Blood, 2014, 123, 1574-1585.	1.4	62
85	E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Research, 2013, 41, e190-e190.	14.5	60
86	web cellHTS2: A web-application for the analysis of high-throughput screening data. BMC Bioinformatics, 2010, 11, 185.	2.6	58
87	Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker. Molecular and Cellular Proteomics, 2017, 16, 998-1008.	3.8	58
88	Gene expression atlas of a developing tissue by single cell expression correlation analysis. Nature Methods, 2019, 16, 750-756.	19.0	58
89	A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie–Wnt signaling axis in the liver. Developmental Cell, 2021, 56, 1677-1693.e10.	7.0	58
90	The cardiac microenvironment uses nonâ€canonical <scp>WNT</scp> signaling to activate monocytes after myocardial infarction. EMBO Molecular Medicine, 2017, 9, 1279-1293.	6.9	55

#	Article	IF	Citations
91	caRpools: an R package for exploratory data analysis and documentation of pooled CRISPR/Cas9 screens. Bioinformatics, 2016, 32, 632-634.	4.1	54
92	A PP4 Holoenzyme Balances Physiological and Oncogenic Nuclear Factor-Kappa B Signaling in T Lymphocytes. Immunity, 2012, 37, 697-708.	14.3	53
93	Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines. Nucleic Acids Research, 2013, 41, e199-e199.	14.5	53
94	Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia. Molecular Metabolism, 2016, 5, 67-78.	6.5	51
95	The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells. Scientific Reports, 2017, 7, 2265.	3.3	51
96	Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing $\langle i \rangle$ Drosophila $\langle i \rangle$ wing. Development (Cambridge), 2019, 146, .	2.5	51
97	Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis. Journal of Experimental Medicine, 2013, 210, 1761-1777.	8.5	50
98	An RNAi screen identifies USP2 as a factor required for TNFâ€Î±â€induced NFâ€ÎºB signaling. International Journal of Cancer, 2011, 129, 607-618.	5.1	49
99	Secretion and extracellular space travel of Wnt proteins. Current Opinion in Genetics and Development, 2013, 23, 385-390.	3.3	48
100	Wnt Signaling. Current Topics in Developmental Biology, 2011, 97, 21-53.	2.2	47
101	JNK-dependent intestinal barrier failure disrupts host–microbe homeostasis during tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9401-9412.	7.1	47
102	ATF3 acts as a rheostat to control JNK signalling during intestinal regeneration. Nature Communications, 2017, 8, 14289.	12.8	46
103	miR-10a-5p and miR-29b-3p as Extracellular Vesicle-Associated Prostate Cancer Detection Markers. Cancers, 2020, 12, 43.	3.7	46
104	HCF-1 Amino- and Carboxy-Terminal Subunit Association through Two Separate Sets of Interaction Modules: Involvement of Fibronectin Type 3 Repeats. Molecular and Cellular Biology, 2000, 20, 6721-6730.	2.3	45
105	Highâ€throughput RNAi screening to dissect cellular pathways: A howâ€to guide. Biotechnology Journal, 2010, 5, 368-376.	3.5	45
106	\hat{l}^2 -catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells. Scientific Reports, 2018, 8, 3178.	3.3	45
107	Genome-wide RNAi as a route to gene function in Drosophila. Briefings in Functional Genomics & Proteomics, 2004, 3, 168-176.	3.8	44
108	GenomeRNAi: a database for cell-based RNAi phenotypes. Nucleic Acids Research, 2007, 35, D492-D497.	14.5	44

#	Article	IF	CITATIONS
109	Towards a compendium of essential genes – From model organisms to synthetic lethality in cancer cells. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 74-85.	5.2	42
110	ERADâ€dependent control of the Wnt secretory factor Evi. EMBO Journal, 2018, 37, .	7.8	42
111	Multiplexed conditional genome editing with Cas12a in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22890-22899.	7.1	42
112	Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia. Leukemia, 2009, 23, 2018-2026.	7.2	40
113	A Large-Scale RNAi Screen Identifies <i>Deaf1 </i> as a Regulator of Innate Immune Responses in <i>Drosophila</i> . Journal of Innate Immunity, 2010, 2, 181-194.	3.8	39
114	A highâ€throughput <scp>RNA</scp> i screen for detection of immuneâ€checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. EMBO Molecular Medicine, 2015, 7, 450-463.	6.9	39
115	Systematic characterization of panâ€cancer mutation clusters. Molecular Systems Biology, 2018, 14, e7974.	7.2	39
116	A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening. PLoS ONE, 2011, 6, e28338.	2.5	39
117	Cellular phenotyping by RNAi. Briefings in Functional Genomics & Proteomics, 2006, 5, 52-56.	3.8	38
118	GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Research, 2010, 38, D448-D452.	14.5	37
119	Transmembrane Protein 198 Promotes LRP6 Phosphorylation and Wnt Signaling Activation. Molecular and Cellular Biology, 2011, 31, 2577-2590.	2.3	37
120	Landscape of protein–protein interactions in <i>Drosophila</i> immune deficiency signaling during bacterial challenge. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10717-10722.	7.1	37
121	A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis. EMBO Journal, 2014, 33, n/a-n/a.	7.8	37
122	A Genome-Wide RNA Interference Screen Identifies Caspase 4 as a Factor Required for Tumor Necrosis Factor Alpha Signaling. Molecular and Cellular Biology, 2012, 32, 3372-3381.	2.3	36
123	Wnk kinases are positive regulators of canonical Wnt/βâ€catenin signalling. EMBO Reports, 2013, 14, 718-725.	4.5	35
124	A Genome-Wide RNA Interference Screen Identifies a Differential Role of the Mediator CDK8 Module Subunits for GATA/ RUNX-Activated Transcription in <i>Drosophila</i> . Molecular and Cellular Biology, 2010, 30, 2837-2848.	2.3	34
125	Identification of ER Proteins Involved in the Functional Organisation of the Early Secretory Pathway in Drosophila Cells by a Targeted RNAi Screen. PLoS ONE, 2011, 6, e17173.	2.5	34
126	Stem Cell Intrinsic Hexosamine Metabolism Regulates Intestinal Adaptation to Nutrient Content. Developmental Cell, 2018, 47, 112-121.e3.	7.0	34

#	Article	IF	CITATIONS
127	gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biology, 2020, 21, 53.	8.8	34
128	Amplicon Sequencing of Colorectal Cancer: Variant Calling in Frozen and Formalin-Fixed Samples. PLoS ONE, 2015, 10, e0127146.	2.5	34
129	Cdk12 Is A Gene-Selective RNA Polymerase II Kinase That Regulates a Subset of the Transcriptome, Including Nrf2 Target Genes. Scientific Reports, 2016, 6, 21455.	3.3	33
130	Widespread Rewiring of Genetic Networks upon Cancer Signaling Pathway Activation. Cell Systems, 2018, 6, 52-64.e4.	6.2	33
131	Immune cell recruitment in teratomas is impaired by increased Wnt secretion. Stem Cell Research, 2016, 17, 607-615.	0.7	32
132	Extracellular vesicles and oncogenic signaling. Molecular Oncology, 2021, 15, 3-26.	4.6	30
133	Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1. PLoS Genetics, 2012, 8, e1002897.	3.5	29
134	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	6.2	29
135	Identification of JAK/STAT pathway regulators—Insights from RNAi screens. Seminars in Cell and Developmental Biology, 2008, 19, 360-369.	5.0	26
136	< scp>elF $<$ /scp>4A inactivates $<$ scp>TORC $<$ /scp>1 in response to amino acidÂstarvation. EMBO Journal, 2016, 35, 1058-1076.	7.8	26
137	eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. Journal of Biological Chemistry, 2020, 295, 8759-8774.	3.4	26
138	Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein. PLoS Genetics, 2016, 12, e1006072.	3.5	26
139	Trafficking, Acidification, and Growth Factor Signaling. Science Signaling, 2010, 3, pe26.	3.6	25
140	Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity. BMC Biology, 2014, 12, 44.	3.8	24
141	Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation and Actin Cortex Destabilization. Cancer Research, 2016, 76, 6690-6700.	0.9	24
142	Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library. BMC Biology, 2020, 18, 174.	3.8	24
143	Loss of PAFAH1B2 Reduces Amyloid- \hat{l}^2 Generation by Promoting the Degradation of Amyloid Precursor Protein C-Terminal Fragments. Journal of Neuroscience, 2012, 32, 18204-18214.	3.6	23
144	A genetic interaction map of cell cycle regulators. Molecular Biology of the Cell, 2016, 27, 1397-1407.	2.1	22

#	Article	IF	Citations
145	A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment. Cell Death and Differentiation, 2018, 25, 2053-2070.	11.2	22
146	The drug-induced phenotypic landscape of colorectal cancer organoids. Nature Communications, 2022, 13 , .	12.8	22
147	Managing the genome: microRNAs in Drosophila. Differentiation, 2004, 72, 74-80.	1.9	21
148	Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells. Science Signaling, 2017, 10 , .	3.6	21
149	Evolutionary conserved NSL complex/BRD4 axis controls transcription activation via histone acetylation. Nature Communications, 2020, 11, 2243.	12.8	21
150	Time-resolved mapping of genetic interactions to model rewiring of signaling pathways. ELife, 2018, 7, .	6.0	21
151	Systematic functional analysis of rab GTPases reveals limits of neuronal robustness to environmental challenges in flies. ELife, 2021, 10, .	6.0	20
152	Microenvironmental innate immune signaling and cell mechanical responses promote tumor growth. Developmental Cell, 2021, 56, 1884-1899.e5.	7.0	20
153	Thymic Epithelial Cells Are a Nonredundant Source of Wnt Ligands for Thymus Development. Journal of Immunology, 2015, 195, 5261-5271.	0.8	19
154	CAMK1D Triggers Immune Resistance of Human Tumor Cells Refractory to Anti–PD-L1 Treatment. Cancer Immunology Research, 2020, 8, 1163-1179.	3.4	17
155	Hyd ubiquitinates the NF-κB co-factor Akirin to operate an effective immune response in Drosophila. PLoS Pathogens, 2020, 16, e1008458.	4.7	17
156	RNAi Screening in Cultured Drosophila Cells. Methods in Molecular Biology, 2008, 420, 139-153.	0.9	17
157	Measuring genetic interactions in human cells by RNAi and imaging. Nature Protocols, 2014, 9, 2341-2353.	12.0	16
158	Context-dependent genetic interactions in cancer. Current Opinion in Genetics and Development, 2019, 54, 73-82.	3.3	16
159	Screens, maps & networks: from genome sequences to personalized medicine. Current Opinion in Genetics and Development, 2012, 22, 36-44.	3.3	15
160	A novel phenotypic dissimilarity method for image-based high-throughput screens. BMC Bioinformatics, 2013, 14, 336.	2.6	15
161	Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks. PLoS Genetics, 2017, 13, e1006861.	3.5	15
162	PPARÎ ³ induces PD-L1 expression in MSS+ colorectal cancer cells. Oncolmmunology, 2021, 10, 1906500.	4.6	15

#	Article	IF	CITATIONS
163	Extracting quantitative genetic interaction phenotypes from matrix combinatorial RNAi. BMC Bioinformatics, 2011, 12, 342.	2.6	14
164	Oxygenation and adenosine deaminase support growth and proliferation of <i>ex vivo</i> cultured <i>Drosophila</i> wing imaginal discs. Development (Cambridge), 2017, 144, 2529-2538.	2.5	14
165	Wnt10b-GSK3β–dependent Wnt/STOP signaling prevents aneuploidy in human somatic cells. Life Science Alliance, 2021, 4, e202000855.	2.8	14
166	A Protocol for a High-Throughput Multiplex Cell Viability Assay. Methods in Molecular Biology, 2016, 1470, 75-84.	0.9	13
167	Sticking Around: Short-Range Activity of Wnt Ligands. Developmental Cell, 2016, 36, 485-486.	7.0	13
168	Exocyst-mediated apical Wg secretion activates signaling in the Drosophila wing epithelium. PLoS Genetics, 2019, 15, e1008351.	3.5	13
169	EVI/WLS function is regulated by ubiquitylation and is linked to ER-associated degradation by ERLIN2. Journal of Cell Science, 2021, 134, .	2.0	13
170	Innate immunity: regulation of caspases by IAP-dependent ubiquitylation. EMBO Journal, 2012, 31, 2750-2752.	7.8	12
171	Systematic approaches to dissect biological processes in stem cells by imageâ€based screening. Biotechnology Journal, 2012, 7, 768-778.	3 . 5	12
172	Decoding the Regulatory Logic of the Drosophila Male Stem Cell System. Cell Reports, 2018, 24, 3072-3086.	6.4	12
173	Clinical relevance of gene expression in localized and metastatic prostate cancer exemplified by FABP5. World Journal of Urology, 2020, 38, 637-645.	2.2	12
174	The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends in Cell Biology, 2021, 31, 485-499.	7.9	12
175	Multiâ€omics integration identifies a selective vulnerability of colorectal cancer subtypes to <scp>YM155</scp> . International Journal of Cancer, 2021, 148, 1948-1963.	5.1	11
176	Phenotype databases for genetic screens in human cells. Journal of Biotechnology, 2017, 261, 63-69.	3.8	10
177	Loxl2 is dispensable for dermal development, homeostasis and tumour stroma formation. PLoS ONE, 2018, 13, e0199679.	2.5	10
178	Drosophila Wnt/Fz Pathways. Science Signaling, 2005, 2005, cm5-cm5.	3.6	9
179	On target: A public repository for large-scale RNAi experiments. Nature Cell Biology, 2012, 14, 115-115.	10.3	9
180	Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference. PLoS ONE, 2014, 9, e98579.	2.5	9

#	Article	IF	Citations
181	Clinical and Histopathologic Features of Colorectal Adenocarcinoma in Crohn's Disease. Journal of Clinical Gastroenterology, 2018, 52, 635-640.	2.2	9
182	Biochemical Methods to Analyze Wnt Protein Secretion. Methods in Molecular Biology, 2016, 1481, 17-28.	0.9	8
183	Methods for High-Throughput RNAi Screening in Drosophila Cells. Methods in Molecular Biology, 2016, 1478, 95-116.	0.9	8
184	An RNAi Screen Reveals an Essential Role for HIPK4 in Human Skin Epithelial Differentiation from iPSCs. Stem Cell Reports, 2017, 9, 1234-1245.	4.8	8
185	Detection of mutational patterns in cellâ€free DNA of colorectal cancer by custom amplicon sequencing. Molecular Oncology, 2019, 13, 1669-1683.	4.6	8
186	Salt-inducible kinase 3 protects tumor cells from cytotoxic T-cell attack by promoting TNF-induced NF- $\hat{\mathbb{I}}^2$ B activation. , 2022, 10, e004258.		8
187	Cell Perturbation Screens for Target Identification by RNAi. Methods in Molecular Biology, 2012, 910, 1-13.	0.9	7
188	Bacterial recognition by PGRP-SA and downstream signalling by Toll/DIF sustain commensal gut bacteria in Drosophila. PLoS Genetics, 2022, 18, e1009992.	3.5	7
189	Drosophila genome takes flight. Nature Cell Biology, 2000, 2, E53-E54.	10.3	6
190	HTSvis: a web app for exploratory data analysis and visualization of arrayed high-throughput screens. Bioinformatics, 2017, 33, 2960-2962.	4.1	5
191	Refining Pathways: A Model Comparison Approach. PLoS ONE, 2016, 11, e0155999.	2.5	5
192	Design of RNAi Reagents for Invertebrate Model Organisms and Human Disease Vectors. Methods in Molecular Biology, 2013, 942, 315-346.	0.9	4
193	Functional fingerprinting of human mesenchymal stem cells using high-throughput RNAi screening. Genome Medicine, 2015, 7, 46.	8.2	4
194	Systematic epistatic mapping of cellular processes. Cell Division, 2017, 12, 2.	2.4	4
195	Conditional CRISPR-Cas Genome Editing in Drosophila to Generate Intestinal Tumors. Cells, 2021, 10, 3156.	4.1	4
196	WEADE: A workflow for enrichment analysis and data exploration. PLoS ONE, 2018, 13, e0204016.	2.5	3
197	Cancer-Associated Mutations in Normal Colorectal Mucosa Adjacent to Sporadic Neoplasia. Clinical and Translational Gastroenterology, 2020, 11, e00212.	2.5	3
198	Allele-specific endogenous tagging and quantitative analysis of \hat{l}^2 -catenin in colorectal cancer cells. ELife, 2022, 11, .	6.0	3

#	Article	IF	Citations
199	Celebrating 100 years of Drosophila research. EMBO Reports, 2010, 11, 724-726.	4.5	2
200	Wnk kinases are positive regulators of canonical Wnt∫l²â€€atenin signalling. EMBO Reports, 2013, 14, 845-845.	4.5	2
201	An introduction to systems genetics. , 0, , 1-11.		2
202	Large-Scale RNAi Screens to Dissect TNF and NF-κB Signaling Pathways. Advances in Experimental Medicine and Biology, 2011, 691, 131-139.	1.6	2
203	Polymorphisms in CTNNBL1 in relation to colorectal cancer with evolutionary implications. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 36-50.	0.4	2
204	Targeting euchromatic histone lysine methyltransferases sensitizes colorectal cancer to histone deacetylase inhibitors. International Journal of Cancer, 0, , .	5.1	2
205	CS16-4. STAT3 transcriptional activity is controlled by regulated acetylation. Cytokine, 2011, 56, 105.	3.2	1
206	Editorial overview: Functionalizing cancer genomes in the era of big data. Current Opinion in Genetics and Development, 2019, 54, iii-vi.	3.3	1
207	Tools for integrative genomics: Genome-wide RNAi and expression profiling in Drosophila. , 2005, , 433-446.		O
208	Design of RNAi reagents for invertebrate model organisms and human disease vectors. Nature Precedings, $2011, , .$	0.1	0
209	Genetic and Genomic Dissection of Apoptosis Signaling. , 2012, , 181-197.		0
210	Mapping genetic interactions across many phenotypes in metazoan cells., 0,, 36-50.		0
211	Joining the dots: network analysis of gene perturbation data. , 0, , 83-107.		O
212	Inferring genetic architecture from systems genetics studies., 0,, 139-160.		0
213	Computational paradigms for analyzing genetic interaction networks. , 0, , 12-35.		O
214	High-content screening in infectious diseases: new drugs against bugs. , 0, , 108-138.		0
215	E-RNAi: a web application to design optimized RNAi constructs , 0, 2005, .		0
216	Wnt secretion requires Evi, a conserved transmembrane protein., 0, 2007, .		0

#	Article	IF	CITATIONS
217	Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis. Journal of Cell Biology, 2013, 202, 2024OIA67.	5.2	0
218	Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Journal of Cell Science, 2014, 127, e1-e1.	2.0	0
219	Abstract A070: Genetic knockdown screens across tumor types unravel a diverse tumor "immune-modulatome―landscape. , 2016, , .		0
220	Abstract 2339: RNAi discovery platform to identify novel genes that prevent immune surveillance in pancreatic ductal adenocarcinoma (PDAC). , 2016, , .		0
221	Abstract 5766: High-content microscopy-based screening of colorectal organoids. , 2017, , .		0
222	Abstract A10: CRISPR-AnalyzeR (caR): Web-based, interactive and exploratory analysis and documentation of pooled CRISPR/Cas9 screens., 2017,,.		0
223	Abstract B16: Epistatic mapping of signaling and chromatin regulators. , 2017, , .		0
224	Abstract B06: HTSvis: An user-friendly application for analysis of arrayed high-throughput experiments by interactive data representations. , 2017, , .		0
225	Abstract IA12: Widespread rewiring of genetic interaction networks upon cancer pathway activation. , 2017, , .		0
226	Abstract A23: Multi-parametric genetic interactions map dynamic genetic network rewiring upon anti-proliferative treatment. , 2017, , .		0
227	Decoding the Regulatory Logic of the <i>Drosophila</i> Male Stem Cell System. SSRN Electronic Journal, 0, , .	0.4	0
228	Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments. Methods in Molecular Biology, 2021, 2162, 3-22.	0.9	0