
Anthony-Samuel LaMantia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	8
2	Why Does the Face Predict the Brain? Neural Crest Induction, Craniofacial Morphogenesis, and Neural Circuit Development. Frontiers in Physiology, 2020, 11, 610970.	2.8	19
3	Persistent Feeding and Swallowing Deficits in a Mouse Model of 22q11.2 Deletion Syndrome. Frontiers in Neurology, 2020, 11, 4.	2.4	22
4	The strengths of the genetic approach to understanding neural systems development and function: Ray Guillery's synthesis. European Journal of Neuroscience, 2019, 49, 888-899.	2.6	4
5	In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects?. Journal of Neurodevelopmental Disorders, 2019, 11, 7.	3.1	56
6	Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron, 2019, 102, 1127-1142.e3.	8.1	108
7	3.2 PARVALBUMIN INTERNEURON IMPAIRMENT INDUCED BY OXIDATIVE STRESS AS A COMMON PATHOLOGICAL MECHANISM IN ANIMAL MODELS OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S1-S2.	4.3	0
8	Altered neurobiological function of brainstem hypoglossal neurons in DiGeorge/22q11.2 Deletion Syndrome. Neuroscience, 2017, 359, 1-7.	2.3	31
9	Hard to swallow: Developmental biological insights into pediatric dysphagia. Developmental Biology, 2016, 409, 329-342.	2.0	39
10	22q11 Deletion Syndrome. , 2015, , 677-696.		2
11	<i>Ranbp1</i> , Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cerebral Cortex, 2015, 25, 3977-3993.	2.9	44
12	Transcriptional Regulation of Cranial Sensory Placode Development. Current Topics in Developmental Biology, 2015, 111, 301-350.	2.2	72
13	22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development. Human Molecular Genetics, 2013, 22, 300-312.	2.9	41
14	Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proceedings of the United States of America, 2012, 109, 18601-18606.	7.1	94
15	Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium. Development (Cambridge), 2010, 137, 2471-2481.	2.5	85
16	Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16434-16445.	7.1	149
17	Molecular Specification and Patterning of Progenitor Cells in the Lateral and Medial Ganglionic Eminences. Journal of Neuroscience, 2008, 28, 9504-9518.	3.6	50
18	Position and time specify the migration of a pioneering population of olfactory bulb interneurons. Developmental Biology, 2006, 297, 387-401.	2.0	50

#	Article	IF	CITATIONS
19	Noses and neurons: Induction, morphogenesis, and neuronal differentiation in the peripheral olfactory pathway. Developmental Dynamics, 2005, 234, 464-481.	1.8	47
20	Retinoic Acid Signaling Identifies a Distinct Precursor Population in the Developing and Adult Forebrain. Journal of Neuroscience, 2005, 25, 7636-7647.	3.6	79
21	Loss ofGli3 andShh function disrupts olfactory axon trajectories. Journal of Comparative Neurology, 2004, 472, 292-307.	1.6	29
22	RanBP1, a velocardiofacial/DiGeorge syndrome candidate gene, is expressed at sites of mesenchymal/epithelial induction. Mechanisms of Development, 2002, 111, 177-180.	1.7	23
23	22q11 DS: genomic mechanisms and gene function in DiGeorge/velocardiofacial syndrome. International Journal of Developmental Neuroscience, 2002, 20, 407-419.	1.6	41
24	Retinoic acid signaling at sites of plasticity in the mature central nervous system. Journal of Comparative Neurology, 2002, 452, 228-241.	1.6	71
25	High-resolution mapping of the Gli3 mutation Extra-toesJ reveals a 51.5-kb deletion. Mammalian Genome, 2002, 13, 58-61.	2.2	80
26	Mesenchymal/Epithelial Induction Mediates Olfactory Pathway Formation. Neuron, 2000, 28, 411-425.	8.1	143
27	Age-Dependent Retinoic Acid Regulation of Gene Expression Distinguishes the Cervical, Thoracic, Lumbar, and Sacral Spinal Cord Regions during Development. Developmental Neuroscience, 1999, 21, 113-125.	2.0	15
28	Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biological Psychiatry, 1999, 46, 19-30.	1.3	101
29	Retinoid signaling distinguishes a subpopulation of olfactory receptor neurons in the developing and adult mouse. , 1998, 394, 445-461.		57
30	Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. Journal of Comparative Neurology, 1997, 379, 171-184.	1.6	96
31	Differential adhesion and the initial assembly of the mammalian olfactory nerve. , 1996, 373, 240-254.		78
32	Retinoid signaling and the generation of regional and cellular diversity in the embryonic mouse spinal cord. Developmental Dynamics, 1995, 204, 1-12.	1.8	42
33	Development of blobs in the visual cortex of macaques. Journal of Comparative Neurology, 1993, 334, 169-175.	1.6	55