Kathy K Griendling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6920471/publications.pdf

Version: 2024-02-01

217 papers 46,017 citations

89 h-index

3731

201 g-index

224 all docs

224 docs citations

times ranked

224

30624 citing authors

#	Article	IF	Citations
1	NAD(P)H Oxidase. Circulation Research, 2000, 86, 494-501.	4.5	2,690
2	Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells Circulation Research, 1994, 74, 1141-1148.	4.5	2,512
3	Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone Journal of Clinical Investigation, 1996, 97, 1916-1923.	8.2	2,179
4	Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. American Journal of Physiology - Cell Physiology, 2007, 292, C82-C97.	4.6	1,589
5	Cell transformation by the superoxide-generating oxidase Mox1. Nature, 1999, 401, 79-82.	27.8	1,341
6	Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circulation Research, 2018, 122, 877-902.	4.5	1,212
7	Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature, 1991, 351, 233-236.	27.8	1,211
8	Role of oxidative stress in atherosclerosis. American Journal of Cardiology, 2003, 91, 7-11.	1.6	1,073
9	Mechanisms Underlying Endothelial Dysfunction in Diabetes Mellitus. Circulation Research, 2001, 88, E14-22.	4.5	941
10	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081.	2.7	905
10		2.7	905 859
	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081. Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology,		
11	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081. Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2175-2183. Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation,	2.4	859
11 12	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081. Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2175-2183. Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation, 2002, 105, 1429-1435.	2.4	859 815
11 12 13	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081. Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2175-2183. Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation, 2002, 105, 1429-1435. Oxidative Stress and Cardiovascular Injury. Circulation, 2003, 108, 1912-1916. Novel gp91 ^{<i>phox</i>} Homologues in Vascular Smooth Muscle Cells. Circulation	2.4 1.6 1.6	859 815 800
11 12 13	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081. Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2175-2183. Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation, 2002, 105, 1429-1435. Oxidative Stress and Cardiovascular Injury. Circulation, 2003, 108, 1912-1916. Novel gp91 < sup > <i> phox </i> i > Homologues in Vascular Smooth Muscle Cells. Circulation Research, 2001, 88, 888-894. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews	2.4 1.6 1.6 4.5	859 815 800 787
11 12 13 14	Reactive Oxygen Species in the Vasculature. Hypertension, 2003, 42, 1075-1081. Modulation of Protein Kinase Activity and Gene Expression by Reactive Oxygen Species and Their Role in Vascular Physiology and Pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2175-2183. Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis. Circulation, 2002, 105, 1429-1435. Oxidative Stress and Cardiovascular Injury. Circulation, 2003, 108, 1912-1916. Novel gp91 ^{<i>phox</i> > (sup> Homologues in Vascular Smooth Muscle Cells. Circulation Research, 2001, 88, 888-894. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews Drug Discovery, 2011, 10, 453-471.}	2.4 1.6 1.6 4.5	859 815 800 787

#	Article	IF	CITATIONS
19	Angiotensin II Stimulation of NAD(P)H Oxidase Activity. Circulation Research, 2002, 91, 406-413.	4.5	672
20	Biochemistry, Physiology, and Pathophysiology of NADPH Oxidases in the Cardiovascular System. Circulation Research, 2012, 110, 1364-1390.	4.5	669
21	Increased NADH-Oxidase–Mediated Superoxide Production in the Early Stages of Atherosclerosis. Circulation, 1999, 99, 2027-2033.	1.6	661
22	The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends in Pharmacological Sciences, 2003, 24, 471-478.	8.7	627
23	Role of NADH/NADPH Oxidase–Derived H ₂ O ₂ in Angiotensin Il–Induced Vascular Hypertrophy. Hypertension, 1998, 32, 488-495.	2.7	592
24	Effects of Angiotensin II Infusion on the Expression and Function of NAD(P)H Oxidase and Components of Nitric Oxide/cGMP Signaling. Circulation Research, 2002, 90, E58-65.	4.5	592
25	p38 Mitogen-activated Protein Kinase Is a Critical Component of the Redox-sensitive Signaling Pathways Activated by Angiotensin II. Journal of Biological Chemistry, 1998, 273, 15022-15029.	3.4	588
26	Oscillatory and Steady Laminar Shear Stress Differentially Affect Human Endothelial Redox State. Circulation Research, 1998, 82, 1094-1101.	4.5	567
27	Distinct Subcellular Localizations of Nox1 and Nox4 in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 677-683.	2.4	533
28	NADPH Oxidases: Functions and Pathologies in the Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 653-661.	2.4	523
29	Reactive Oxygen Species Mediate the Activation of Akt/Protein Kinase B by Angiotensin II in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1999, 274, 22699-22704.	3.4	504
30	Direct Interaction of the Novel Nox Proteins with p22phox Is Required for the Formation of a Functionally Active NADPH Oxidase. Journal of Biological Chemistry, 2004, 279, 45935-45941.	3.4	468
31	Measurement of Reactive Oxygen Species in Cardiovascular Studies. Hypertension, 2007, 49, 717-727.	2.7	457
32	p22phox mRNA Expression and NADPH Oxidase Activity Are Increased in Aortas From Hypertensive Rats. Circulation Research, 1997, 80, 45-51.	4.5	423
33	Upregulation of Nox-Based NAD(P)H Oxidases in Restenosis After Carotid Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 21-27.	2.4	421
34	Regulation of Signal Transduction by Reactive Oxygen Species in the Cardiovascular System. Circulation Research, $2015,116,531-549.$	4.5	397
35	Nox1 Overexpression Potentiates Angiotensin II-Induced Hypertension and Vascular Smooth Muscle Hypertrophy in Transgenic Mice. Circulation, 2005, 112, 2668-2676.	1.6	396
36	Oxidative stress and diabetic cardiovascular complications. Free Radical Biology and Medicine, 2006, 40, 183-192.	2.9	392

#	Article	IF	Citations
37	Poldip2, a Novel Regulator of Nox4 and Cytoskeletal Integrity in Vascular Smooth Muscle Cells. Circulation Research, 2009, 105, 249-259.	4.5	386
38	Reactive oxygen species as mediators of angiotensin II signaling. Regulatory Peptides, 2000, 91, 21-27.	1.9	372
39	Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Induces Monocyte Adhesion by Stimulating Reactive Oxygen Species Production From a Nox1-Based NADPH Oxidase. Circulation Research, 2004, 95, 773-779.	4.5	350
40	Reactive Oxygen Species, Mitochondria, and NAD(P)H Oxidases in the Development and Progression of Heart Failure. Congestive Heart Failure, 2002, 8, 132-140.	2.0	349
41	Angiotensin II Signaling in Vascular Smooth Muscle. Hypertension, 1997, 29, 366-370.	2.7	347
42	Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radical Biology and Medicine, 2008, 45, 1340-1351.	2.9	342
43	NADPH oxidases and angiotensin II receptor signaling. Molecular and Cellular Endocrinology, 2009, 302, 148-158.	3.2	321
44	Reactive oxygen species in hypertension*1An update. American Journal of Hypertension, 2004, 17, 852-860.	2.0	311
45	Pulsatile Versus Oscillatory Shear Stress Regulates NADPH Oxidase Subunit Expression. Circulation Research, 2003, 93, 1225-1232.	4.5	300
46	Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovascular Research, 2006, 71, 216-225.	3.8	298
47	Nox4 Is Required for Maintenance of the Differentiated Vascular Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 42-48.	2.4	296
48	Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System. Circulation Research, 2016, 119 , e39-75.	4.5	290
49	Basic Mechanisms of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Injury. Trends in Cardiovascular Medicine, 2007, 17, 48-54.	4.9	282
50	Epidermal Growth Factor Receptor Transactivation by Angiotensin II Requires Reactive Oxygen Species in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 489-495.	2.4	267
51	Oscillatory Shear Stress Stimulates Endothelial Production of <mml:math altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mo>-</mml:mo> from p47 -dependent NAD(P)H Oxidases, Leading to Monocyte Adhesion. Journal of Biological</mml:msubsup></mml:math>	<td>osup61/mm</td>	osu p6 1/mm
52	Chemistry, 2003, 278, 17201-17208. Nox2-Induced Production of Mitochondrial Superoxide in Angiotensin II-Mediated Endothelial Oxidative Stress and Hypertension. Antioxidants and Redox Signaling, 2014, 20, 281-294.	5.4	248
53	Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. Journal of Clinical Investigation, 2007, 117, 719-729.	8.2	246
54	Peroxisome proliferator-activated receptor-γ ligands regulate endothelial membrane superoxide production. American Journal of Physiology - Cell Physiology, 2005, 288, C899-C905.	4.6	244

#	Article	IF	CITATIONS
55	Redox Signaling, Vascular Function, and Hypertension. Antioxidants and Redox Signaling, 2008, 10, 1045-1059.	5.4	219
56	Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling. Free Radical Biology and Medicine, 2011, 51, 1271-1288.	2.9	218
57	Mechanisms of Vascular Smooth Muscle NADPH Oxidase 1 (Nox1) Contribution to Injury-Induced Neointimal Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 480-487.	2.4	211
58	Modulation of Vascular Smooth Muscle Signaling by Reactive Oxygen Species. Physiology, 2006, 21, 269-280.	3.1	208
59	Redox control of vascular smooth muscle proliferation. Translational Research, 1998, 132, 9-15.	2.3	192
60	NAD(P)H Oxidase-Derived Reactive Oxygen Species as Mediators of Angiotensin II Signaling. Antioxidants and Redox Signaling, 2002, 4, 899-914.	5.4	188
61	Oxidative Stress and Hypertension. Circulation Research, 2021, 128, 993-1020.	4.5	188
62	The Pickering Lecture British Hypertension Society, 10th September 2002. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2003, 4, 51-61.	1.7	185
63	Cholesterol Depletion Inhibits Epidermal Growth Factor Receptor Transactivation by Angiotensin II in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2001, 276, 48269-48275.	3.4	184
64	Angiotensin II Type 1 Receptor. Hypertension, 1998, 32, 459-466.	2.7	176
65	Modulation of Extracellular Superoxide Dismutase Expression by Angiotensin II and Hypertension. Circulation Research, 1999, 85, 23-28.	4.5	175
66	Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H673-H679.	3.2	157
67	Phosphoinositide-Dependent Kinase 1 and p21-Activated Protein Kinase Mediate Reactive Oxygen Species–Dependent Regulation of Platelet-Derived Growth Factor–Induced Smooth Muscle Cell Migration. Circulation Research, 2004, 94, 1219-1226.	4.5	152
68	Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radical Biology and Medicine, 2008, 45, 329-335.	2.9	151
69	NADPH Oxidase Inhibitors: New Antihypertensive Agents?. Journal of Cardiovascular Pharmacology, 2007, 50, 9-16.	1.9	142
70	Endothelial control of the cardiovascular system: recent advances. FASEB Journal, 1996, 10, 283-292.	0.5	140
71	Dual Role of Reactive Oxygen Species in Vascular Growth. Circulation Research, 1999, 85, 562-563.	4.5	138
72	Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Research, 1993, 21, 1259-1263.	14.5	137

#	Article	IF	Citations
73	Vascular Hypertrophy in Angiotensin II–Induced Hypertension Is Mediated by Vascular Smooth Muscle Cell–Derived H ₂ O ₂ . Hypertension, 2005, 46, 732-737.	2.7	131
74	Reactive Oxygen Species, NADPH Oxidases, and Hypertension. Hypertension, 2010, 56, 325-330.	2.7	128
75	Nox4 NAD(P)H Oxidase Mediates Src-dependent Tyrosine Phosphorylation of PDK-1 in Response to Angiotensin II. Journal of Biological Chemistry, 2008, 283, 24061-24076.	3.4	123
76	RNA Silencing In Vivo Reveals Role of p22 ^{phox} in Rat Angiotensin Slow Pressor Response. Hypertension, 2006, 47, 238-244.	2.7	122
77	C242T <i>CYBA</i> Polymorphism of the NADPH Oxidase Is Associated With Reduced Respiratory Burst in Human Neutrophils. Hypertension, 2004, 43, 1246-1251.	2.7	121
78	Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2073-H2082.	3.2	117
79	Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4. Free Radical Biology and Medicine, 2005, 39, 381-391.	2.9	115
80	RhoA/Rho kinase mediates TGF- \hat{l}^2 (sub) 1 (sub)-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. American Journal of Physiology - Renal Physiology, 2014, 307, F159-F171.	2.7	112
81	Resveratrol Suppresses Angiotensin II-Induced Akt/Protein Kinase B and p70 S6 Kinase Phosphorylation and Subsequent Hypertrophy in Rat Aortic Smooth Muscle Cells. Molecular Pharmacology, 2002, 62, 772-777.	2.3	109
82	Role of p38 MAPK and MAPKAPK-2 in angiotensin Il-induced Akt activation in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2004, 287, C494-C499.	4.6	107
83	Temporal Dispersion of Activation of Phospholipase $C-\hat{l}^21$ and $-\hat{l}^3$ Isoforms by Angiotensin II in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1998, 273, 19772-19777.	3.4	105
84	Mechanisms of Reactive Oxygen Species–Dependent Downregulation of Insulin Receptor Substrate-1 by Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1142-1147.	2.4	104
85	Cytochrome b-558 α-subunit cloning and expression in rat aortic smooth muscle cells. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1231, 215-219.	1.0	98
86	Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radical Biology and Medicine, 2007, 42, 1671-1679.	2.9	98
87	Angiotensin Il–Induced Hypertension Increases Heme Oxygenase-1 Expression in Rat Aorta. Circulation, 1997, 96, 1923-1929.	1.6	98
88	Electron spin resonance characterization of the NAD(P)H oxidase in vascular smooth muscle cells. Free Radical Biology and Medicine, 2001, 30, 603-612.	2.9	96
89	Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H37-H42.	3.2	90
90	Prevention of Abdominal Aortic Aneurysm by Anti–MicroRNA-712 or Anti–MicroRNA-205 in Angiotensin Il–Infused Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1412-1421.	2.4	90

#	Article	IF	Citations
91	Specific Regulation of RGS2 Messenger RNA by Angiotensin II in Cultured Vascular Smooth Muscle Cells. Molecular Pharmacology, 2000, 57, 460-467.	2.3	89
92	NADH/NADPH Oxidase and Vascular Function. Trends in Cardiovascular Medicine, 1997, 7, 301-307.	4.9	86
93	Role of the Multidrug Resistance Protein-1 in Hypertension and Vascular Dysfunction Caused by Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 762-768.	2.4	86
94	The effects of sepsis on endothelium and clinical implications. Cardiovascular Research, 2021, 117, 60-73.	3.8	86
95	Convergence of Redox-Sensitive and Mitogen-Activated Protein Kinase Signaling Pathways in Tumor Necrosis Factor-α–Mediated Monocyte Chemoattractant Protein-1 Induction in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 385-391.	2.4	85
96	Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat. American Journal of Physiology - Renal Physiology, 2007, 292, F1404-F1410.	2.7	85
97	Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radical Biology and Medicine, 2017, 109, 84-107.	2.9	85
98	NADPH oxidase 4 mediates TGF- \hat{l}^2 -induced smooth muscle \hat{l}_\pm -actin via p38MAPK and serum response factor. Free Radical Biology and Medicine, 2011, 50, 354-362.	2.9	83
99	NAD(P)H Oxidases and Their Relevance to Atherosclerosis. Trends in Cardiovascular Medicine, 2001, 11, 124-131.	4.9	82
100	Oxidative stress and diabetic vascular complications. Current Diabetes Reports, 2004, 4, 247-252.	4.2	81
101	Anti-Inflammatory and Antiatherogenic Role of BMP Receptor II in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1350-1359.	2.4	81
102	Angiotensin II Receptor Coupling to Phospholipase D Is Mediated by the $\hat{l}^2\hat{l}^3$ Subunits of Heterotrimeric G Proteins in Vascular Smooth Muscle Cells. Molecular Pharmacology, 1999, 55, 142-149.	2.3	78
103	Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H7-H12.	3.2	77
104	Mechanism of Hydrogen Peroxide-Induced Cell Cycle Arrest in Vascular Smooth Muscle. Antioxidants and Redox Signaling, 2002, 4, 845-854.	5.4	76
105	Pyk2- and Src-Dependent Tyrosine Phosphorylation of PDK1 Regulates Focal Adhesions. Molecular and Cellular Biology, 2003, 23, 8019-8029.	2.3	76
106	Redox Control of Vascular Smooth Muscle Migration. Antioxidants and Redox Signaling, 2010, 12, 625-640.	5.4	76
107	Functional association of nox1 with p22phox in vascular smooth muscle cells. Free Radical Biology and Medicine, 2004, 37, 1542-1549.	2.9	7 3
108	Angiotensin II and NADPH Oxidase Increase ADMA in Vascular Smooth Muscle Cells. Hypertension, 2010, 56, 498-504.	2.7	71

#	Article	IF	Citations
109	Agonist-induced phosphorylation of the vascular type 1 angiotensin II receptor Hypertension, 1994, 24, 523-527.	2.7	67
110	Arachidonic Acid Metabolites Mediate Angiotensin II-Induced NADH/NADPH Oxidase Activity and Hypertrophy in Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 1999, 1, 167-179.	5.4	67
111	Expression of Inducible Nitric-oxide Synthase and Intracellular Protein Tyrosine Nitration in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 22901-22907.	3.4	67
112	Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radical Biology and Medicine, 2017, 108, 225-235.	2.9	66
113	G Protein-coupled Receptor Kinase 5 in Cultured Vascular Smooth Muscle Cells and Rat Aorta. Journal of Biological Chemistry, 1997, 272, 32482-32488.	3.4	65
114	Stimulation of Cellular Signaling and G Protein Subunit Dissociation by G Protein $\hat{l}^2\hat{l}^3$ Subunit-binding Peptides. Journal of Biological Chemistry, 2003, 278, 19634-19641.	3.4	64
115	Angiotensin II Receptor Pharmacology. Advances in Pharmacology, 1994, 28, 269-306.	2.0	62
116	Dual Regulation of Cofilin Activity by LIM Kinase and Slingshot-1L Phosphatase Controls Platelet-Derived Growth Factor–Induced Migration of Human Aortic Smooth Muscle Cells. Circulation Research, 2008, 102, 432-438.	4.5	61
117	Resveratrol Increases Serine 15-Phosphorylated but Transcriptionally Impaired p53 and Induces a Reversible DNA Replication Block in Serum-Activated Vascular Smooth Muscle Cells. Molecular Pharmacology, 2003, 63, 925-932.	2.3	58
118	Polymerase Delta Interacting Protein 2 Sustains Vascular Structure and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2154-2161.	2.4	58
119	Angiotensin II Stimulation of Vascular Smooth Muscle. Journal of Cardiovascular Pharmacology, 1989, 14, S27-S33.	1.9	58
120	Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H945-H957.	3.2	56
121	NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radical Biology and Medicine, 2016, 97, 556-567.	2.9	55
122	Poldip2 is an oxygen-sensitive protein that controls PDH and \hat{l} ±KGDH lipoylation and activation to support metabolic adaptation in hypoxia and cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1789-1794.	7.1	52
123	Detection of Reactive Oxygen Species and Nitric Oxide in Vascular Cells and Tissues. Methods in Molecular Medicine, 2007, 139, 293-311.	0.8	50
124	Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. Journal of Neuroinflammation, 2019, 16, 241.	7.2	50
125	Career Development of Physician Scientists: A Survey of Leaders in Academic Medicine. American Journal of Medicine, 2011, 124, 779-787.	1.5	48
126	Differential effects of AT1 receptor and Ca2+ channel blockade on atherosclerosis, inflammatory gene expression, and production of reactive oxygen species. Atherosclerosis, 2007, 195, 39-47.	0.8	46

#	Article	IF	Citations
127	Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System. Hypertension, 2020, 76, 1350-1367.	2.7	46
128	Heme Oxygenase-1 Is Regulated by Angiotensin II in Rat Vascular Smooth Muscle Cells. Hypertension, 1997, 29, 790-795.	2.7	46
129	Angiotensin II Stimulation of Vascular Smooth Muscle Cells: Secondary Signalling Mechanisms. American Journal of Hypertension, 1989, 2, 659-665.	2.0	45
130	Functional Evaluation of Nonphagocytic NAD(P)H Oxidases. Methods in Enzymology, 2002, 353, 220-233.	1.0	45
131	Out, damned dot: studies of the NAD(P)H oxidase in atherosclerosis. Journal of Clinical Investigation, 2001, 108, 1423-1424.	8.2	44
132	Effects of glucocorticoids on Na+/H+ exchange and growth in cultured vascular smooth muscle cells. Journal of Cellular Physiology, 1988, 137, 391-401.	4.1	43
133	Resveratrol Inhibits Angiotensin II- and Epidermal Growth Factor-Mediated Akt Activation: Role of Gab1 and Shp2. Molecular Pharmacology, 2005, 68, 41-48.	2.3	42
134	NADPH Oxidases: New Regulators of Old Functions. Antioxidants and Redox Signaling, 2006, 8, 1443-1445.	5.4	42
135	Insulin-Like Growth Factor-1 Receptor Expression Masks the Antiinflammatory and Glucose Uptake Capacity of Insulin in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 408-415.	2.4	42
136	Angiotensin II, From Vasoconstrictor to Growth Factor. Circulation Research, 2014, 114, 754-757.	4.5	40
137	NADPH Oxidases: Molecular Understanding Finally Reaching the Clinical Level?. Antioxidants and Redox Signaling, 2009, 11, 2365-2370.	5.4	39
138	Poldip2 Knockout Results in Perinatal Lethality, Reduced Cellular Growth and Increased Autophagy of Mouse Embryonic Fibroblasts. PLoS ONE, 2014, 9, e96657.	2.5	39
139	Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass. American Journal of Physiology - Renal Physiology, 2012, 303, F64-F74.	2.7	36
140	Increased Expression of Nox1 in Neointimal Smooth Muscle Cells Promotes Activation of Matrix Metalloproteinase-9. Journal of Vascular Research, 2012, 49, 242-248.	1.4	36
141	Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Frontiers in Bioscience - Scholar, 2012, S4, 1044-1064.	2.1	34
142	VE-cadherin endocytosis controls vascular integrity and patterning during development. Journal of Cell Biology, 2020, 219, .	5.2	34
143	Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor. Experimental Cell Research, 2011, 317, 2420-2428.	2.6	33
144	Vascular Thrombin Receptor Regulation in Hypertensive Rats. Circulation Research, 1997, 80, 838-844.	4.5	33

#	Article	IF	Citations
145	Platelet-derived Growth Factor (PDGF) Regulates Slingshot Phosphatase Activity via Nox1-dependent Auto-dephosphorylation of Serine 834 in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2011, 286, 35430-35437.	3.4	32
146	Transforming Growth Factor \hat{I}^2 Inhibits Platelet Derived Growth Factor-Induced Vascular Smooth Muscle Cell Proliferation via Akt-Independent, Smad-Mediated Cyclin D1 Downregulation. PLoS ONE, 2013, 8, e79657.	2.5	32
147	High Salt Enhances Reactive Oxygen Species and Angiotensin II Contractions of Glomerular Afferent Arterioles From Mice With Reduced Renal Mass. Hypertension, 2018, 72, 1208-1216.	2.7	31
148	Reactive Oxygen Species Sensitivity of Angiotensin II-dependent Translation Initiation in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 36973-36979.	3.4	30
149	G-Protein binding domains of the angiotensin II AT1A receptors mapped with synthetic peptides selected from the receptor sequence. Biochemical Journal, 1998, 332, 781-787.	3.7	28
150	The A640G and C242T p22phoxPolymorphisms in Patients with Coronary Artery Disease. Antioxidants and Redox Signaling, 2002, 4, 675-680.	5.4	28
151	Polymerase δ-interacting Protein 2: A Multifunctional Protein. Journal of Cardiovascular Pharmacology, 2017, 69, 335-342.	1.9	27
152	$<$ b $>$ Î $^2<$ /b $>$ 1- and $<$ b $>$ Î $^2<$ /b $>$ 2-integrins: central players in regulating vascular permeability and leukocyte recruitment during acute inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H734-H739.	3.2	27
153	SECONDARY SIGNALLING MECHANISMS IN ANGIOTENSIN II-STIMULATED VASCULAR SMOOTH MUSCLE CELLS. Clinical and Experimental Pharmacology and Physiology, 1988, 15, 105-112.	1.9	26
154	NOX4 (NADPH Oxidase 4) and Poldip2 (Polymerase \hat{l} -Interacting Protein 2) Induce Filamentous Actin Oxidation and Promote Its Interaction With Vinculin During Integrin-Mediated Cell Adhesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2423-2434.	2.4	25
155	The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in <i>db/db</i> mice. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H747-H755.	3.2	24
156	Role of Coronin 1B in PDGF-Induced Migration of Vascular Smooth Muscle Cells. Circulation Research, 2012, 111, 56-65.	4.5	23
157	Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorganic and Medicinal Chemistry, 2018, 26, 989-998.	3.0	23
158	Polymerase delta-interacting protein 2 deficiency protects against blood-brain barrier permeability in the ischemic brain. Journal of Neuroinflammation, 2018, 15, 45.	7.2	23
159	Hydrogen Peroxide Regulates Osteopontin Expression through Activation of Transcriptional and Translational Pathways. Journal of Biological Chemistry, 2014, 289, 275-285.	3.4	22
160	Prominent Contribution of Hydrogen Peroxide to Intracellular Reactive Oxygen Species Generated upon Exposure to Naphthalene Secondary Organic Aerosols. Environmental Science and Technology Letters, 2020, 7, 171-177.	8.7	22
161	Polymerase $\hat{\Gamma}$ -Interacting Protein 2 Promotes Postischemic Neovascularization of the Mouse Hindlimb. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1548-1555.	2.4	21
162	Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS ONE, 2016, 11, e0153199.	2.5	21

#	Article	IF	Citations
163	ATVB In Focus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 272-273.	2.4	20
164	Superoxide and hydrogen peroxide counterregulate myogenic contractions in renal afferent arterioles from a mouse model of chronic kidney disease. Kidney International, 2017, 92, 625-633.	5.2	20
165	Poldip2 deficiency protects against lung edema and vascular inflammation in a model of acute respiratory distress syndrome. Clinical Science, 2019, 133, 321-334.	4.3	18
166	Hic-5 Mediates TGFβ–Induced Adhesion in Vascular Smooth Muscle Cells by a Nox4-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1198-1206.	2.4	17
167	Polymerase delta-interacting protein 2 regulates collagen accumulation via activation of the Akt/mTOR pathway in vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2016, 92, 21-29.	1.9	17
168	Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation. Free Radical Biology and Medicine, 2009, 47, 1362-1370.	2.9	16
169	NADPH Oxidases: Progress and Opportunities. Antioxidants and Redox Signaling, 2014, 20, 2692-2694.	5.4	16
170	An acceleration in hypertension-related mortality for middle-aged and older Americans, 1999-2016: An observational study. PLoS ONE, 2020, 15, e0225207.	2.5	16
171	Poldip2 knockdown inhibits vascular smooth muscle proliferation and neointima formation by regulating the expression of PCNA and p21. Laboratory Investigation, 2019, 99, 387-398.	3.7	15
172	Angiotensin-Il-and Endothelin-Induced Protein Phosphorylation in Cultured Vascular Smooth Muscle Cells. Journal of Vascular Research, 1993, 30, 241-249.	1.4	14
173	NADPH Oxidase 1 Mediates Acute Blood Pressure Response to Angiotensin II by Contributing to Calcium Influx in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 101161ATVBAHA121317239.	2.4	14
174	Vascular smooth muscle insulin resistance, but not hypertrophic signaling, is independent of angiotensin II-induced IRS-1 phosphorylation by JNK. American Journal of Physiology - Cell Physiology, 2011, 301, C1415-C1422.	4.6	13
175	Cyclic Strain and Hypertension Increase Osteopontin Expression in the Aorta. Cellular and Molecular Bioengineering, 2017, 10, 144-152.	2.1	12
176	The Vascular Angiotensin (AT1) Receptor. Thrombosis and Haemostasis, 1993, 70, 188-192.	3.4	12
177	Endothelin A and B Receptors Are Down-Regulated in the Hearts of Hypertensive Rats. American Journal of the Medical Sciences, 1994, 307, 222-227.	1.1	11
178	Inhibition of vascular cell growth by X-ray irradiation: comparison with gamma radiation and mechanism of action. International Journal of Radiation Oncology Biology Physics, 2001, 50, 485-493.	0.8	11
179	NADPH Oxidases and Measurement of Reactive Oxygen Species. Methods in Molecular Biology, 2017, 1527, 219-232.	0.9	10
180	Polymerase-Î'-interacting protein 2 activates the RhoGEF epithelial cell transforming sequence 2 in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2019, 316, C621-C631.	4.6	10

#	Article	IF	CITATIONS
181	Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction. Scientific Reports, 2021, 11, 5533.	3.3	10
182	Lack of Long-Term Protective Effect of Antioxidant/Anti-Inflammatory Therapy in Transplant-Induced Ischemia/Reperfusion Injury. American Journal of Nephrology, 2006, 26, 213-217.	3.1	9
183	Relationship of phospholipase C- and phospholipase D-mediated phospholipid remodeling pathways to respiratory burst activation in human neutrophils stimulated by <i>Candida albicans</i> hyphae. Journal of Leukocyte Biology, 1995, 57, 842-850.	3.3	8
184	Out Phoxing the Endothelium. Circulation Research, 2002, 90, 123-124.	4.5	8
185	Mycophenolic Acid Is a New Nox2 Inhibitor. Hypertension, 2007, 49, 25-26.	2.7	7
186	Molecular Biology of Angiotensin II Receptors. , 1994, , 17-48.		7
187	The Yin/Yang of superoxide dismutase mimetics: potential cardiovascular therapies?. British Journal of Pharmacology, 2003, 139, 1059-1060.	5.4	6
188	Nox is playing with a full deck in vascular smooth muscle. Free Radical Biology and Medicine, 2006, 41, 185-187.	2.9	6
189	FGF Suppresses Poldip2 Expression in Osteoblasts. Journal of Cellular Biochemistry, 2017, 118, 1670-1677.	2.6	6
190	Mitochondrial Respiration and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2229-2230.	2.4	6
191	Endothelial Poldip2 regulates sepsis-induced lung injury via Rho pathway activation. Cardiovascular Research, 2022, 118, 2506-2518.	3.8	6
192	Redox Control of Growth Factor Signaling in Heart, Lung, and Circulation. Antioxidants and Redox Signaling, 2003, 5, 689-690.	5.4	5
193	Oxidative Stress and Cardiovascular Disease in Diabetes Mellitus. , 2010, , 263-279.		5
194	Nuclear Factor (Erythroid–Derived 2)-Like 2, the Brake in Oxidative Stress That Nicotinamide Adenine Dinucleotide Phosphate-Oxidase-4 Needs to Protect the Heart. Hypertension, 2015, 65, 499-501.	2.7	5
195	Fundamental Cardiovascular Research: Returns on Societal Investment: A Scientific Statement From the American Heart Association. Circulation Research, 2017, 121, e2-e8.	4.5	5
196	The interdependent effects of cholesterol and substrate stiffness on vascular smooth muscle cell biomechanics. Cardiovascular Research, 2019, 115, 1262-1263.	3.8	5
197	Platelet microRNAs and vascular injury. Journal of Clinical Investigation, 2019, 129, 962-964.	8.2	5
198	Vascular Smooth Muscle. , 2013, , 25-42.		3

#	Article	IF	Citations
199	Characterization of Poldip2 knockout mice: Avoiding incorrect gene targeting. PLoS ONE, 2021, 16, e0247261.	2.5	3
200	Out phoxing the endothelium: what's left without p47?. Circulation Research, 2002, 90, 123-4.	4.5	2
201	Myeloid Poldip2 Contributes to the Development of Pulmonary Inflammation by Regulating Neutrophil Adhesion in a Murine Model of Acute Respiratory Distress Syndrome. Journal of the American Heart Association, 2022, 11, e025181.	3.7	2
202	Thrombin: beyond coagulation. Journal of Molecular and Cellular Cardiology, 2004, 36, 13-15.	1.9	1
203	Molecular Pathways of Smooth Muscle Disease. , 2012, , 1279-1287.		1
204	Chemiluminescence and the Nox1-Nox2-Nox4 Triple Knockout. Antioxidants and Redox Signaling, 2015, 23, 1246-1247.	5.4	1
205	PDGFâ€induced Vascular Smooth Muscle Cell Migration is Regulated by Coronin 1b. FASEB Journal, 2010, 24, 603.6.	0.5	1
206	Vasoconstrictor-mediated ionic events associated with sustained contractile responses in cultured vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 1987, 19, S5.	1.9	0
207	Circulation Research Editors' Yearly Report: 2003. Circulation Research, 2004, 94, 129-131.	4.5	0
208	Circulation Research Editors' Annual Report for 2004. Circulation Research, 2005, 96, 269-271.	4.5	0
209	Kathy Griendling: A Modest Molecular Biologist. Circulation Research, 2011, 108, 789-791.	4.5	0
210	The Role of Oxidative Stress in Hypertension. Developments in Cardiovascular Medicine, 2000, , 323-333.	0.1	0
211	Pathogenesis of Hypertension: Vascular Mechanisms. , 2001, , 80-99.		0
212	Pathogenesis of Hypertension: Vascular Mechanisms. , 2003, , 85-107.		0
213	The Effects of Smooth Muscleâ€Targeted Nox1â€Overexpression in the Development of Hypoxiaâ€Mediated Pulmonary Hypertension. FASEB Journal, 2006, 20, A402.	0.5	0
214	Angiotensin II Signaling in Vascular Physiology and Pathophysiology. , 2008, , 89-115.		0
215	Regulation of the ADMA/PRMT/DDAH pathway in vascular smooth muscle cells by the p22phox component of NADPH oxidase. FASEB Journal, 2009, 23, 803.2.	0.5	0
216	Nox1â€mediated activation of Slingshot phosphatase in VSMC. FASEB Journal, 2010, 24, lb185.	0.5	0

#	Article	IF	CITATIONS
217	Angiotensin II, Oxidative Stress, and Nitric Oxide. Growth Hormone, 1998, , 79-98.	0.2	0