
Christine M Gabardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6920376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO ₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360, 783-787.	6.0	1,638
2	CO ₂ electrolysis to multicarbon products at activities greater than 1 A cm ^{â^'2} . Science, 2020, 367, 661-666.	6.0	860
3	Electrochemical CO ₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 2019, 31, e1807166.	11.1	769
4	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
5	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	16.1	390
6	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 2020, 5, 478-486.	19.8	363
7	Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. Joule, 2019, 3, 2777-2791.	11.7	350
8	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	6.6	326
9	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	16.1	325
10	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	16.1	214
11	Combined high alkalinity and pressurization enable efficient CO ₂ electroreduction to CO. Energy and Environmental Science, 2018, 11, 2531-2539.	15.6	214
12	Designing anion exchange membranes for CO2 electrolysers. Nature Energy, 2021, 6, 339-348.	19.8	209
13	Self-Cleaning CO ₂ Reduction Systems: Unsteady Electrochemical Forcing Enables Stability. ACS Energy Letters, 2021, 6, 809-815.	8.8	159
14	Single Pass CO ₂ Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO ₂ Regeneration. ACS Energy Letters, 2021, 6, 2952-2959.	8.8	155
15	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	6.6	154
16	Hydronium-Induced Switching between CO ₂ Electroreduction Pathways. Journal of the American Chemical Society, 2018, 140, 3833-3837.	6.6	144
17	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
18	Oxygen-tolerant electroproduction of C ₂ products from simulated flue gas. Energy and Environmental Science, 2020, 13, 554-561.	15.6	113

CHRISTINE M GABARDO

#	Article	IF	CITATIONS
19	In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cycling. Journal of Physical Chemistry C, 2014, 118, 22111-22119.	1.5	103
20	Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Communications, 2021, 12, 2932.	5.8	97
21	Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nature Energy, 2022, 7, 170-176.	19.8	96
22	Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nature Communications, 2022, 13, .	5.8	81
23	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	5.8	72
24	Benchâ€Top Fabrication of Hierarchically Structured Highâ€Surfaceâ€Area Electrodes. Advanced Functional Materials, 2013, 23, 3030-3039.	7.8	70
25	Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Applied Energy, 2020, 261, 114305.	5.1	65
26	Downstream of the CO ₂ Electrolyzer: Assessing the Energy Intensity of Product Separation. ACS Energy Letters, 2021, 6, 4405-4412.	8.8	53
27	A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule, 2022, 6, 1333-1343.	11.7	51
28	Programmable Wrinkling of Self-Assembled Nanoparticle Films on Shape Memory Polymers. ACS Nano, 2016, 10, 8829-8836.	7.3	49
29	Prototyping of Wrinkled Nano-/Microstructured Electrodes for Electrochemical DNA Detection. Analytical Chemistry, 2014, 86, 12341-12347.	3.2	38
30	Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Reports Physical Science, 2021, 2, 100522.	2.8	38
31	Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule, 2021, 5, 2742-2753.	11.7	37
32	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nature Communications, 2019, 10, 4807.	5.8	26
33	Rapidly prototyped multi-scale electrodes to minimize the voltage requirements for bacterial cell lysis. Analyst, The, 2015, 140, 1599-1608.	1.7	23
34	Nanoporous and wrinkled electrodes enhance the sensitivity of glucose biosensors. Electrochimica Acta, 2017, 242, 1-9.	2.6	22
35	Concentrated Ethanol Electrosynthesis from CO ₂ via a Porous Hydrophobic Adlayer. ACS Applied Materials & Interfaces, 2022, 14, 4155-4162.	4.0	15
36	Fabrication of Hemispherical and Gradient-Index ZnO Nanostructures and Their Integration into Microsystems. Journal of the Electrochemical Society, 2015, 162, D503-D508.	1.3	3

#	Article	IF	CITATIONS
37	Efficient Electroreduction of CO2 in an Ultra-Slim Pressurized Electrolyzer. ECS Meeting Abstracts, 2019, , .	0.0	0
38	Carbon Dioxide Electroreduction to Multi-Carbon Products Using a Large-Scale Membrane Electrode Assembly. ECS Meeting Abstracts, 2019, , .	0.0	0
39	Stable, High-Rate CO2 Electroreduction to Multi-Carbon Products in a Membrane Electrode Assembly System. ECS Meeting Abstracts, 2019, , .	0.0	0
40	(Digital Presentation) Assessing the Energy Intensity of Product Purification in CO ₂ Electrolysis. ECS Meeting Abstracts, 2022, MA2022-01, 2445-2445.	0.0	0