Karim Lekadir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6920123/publications.pdf

Version: 2024-02-01

48 2,418 18 46 papers citations h-index g-index

52 52 52 52 2515

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?. IEEE Transactions on Medical Imaging, 2018, 37, 2514-2525.	8.9	926
2	A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 155-195.	2.0	190
3	Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 3543-3554.	8.9	168
4	A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 48-55.	6.3	156
5	Image-Based Cardiac Diagnosis With Machine Learning: A Review. Frontiers in Cardiovascular Medicine, 2020, 7, 1.	2.4	143
6	A High-Resolution Atlas and Statistical Model of the Human Heart From Multislice CT. IEEE Transactions on Medical Imaging, 2013, 32, 28-44.	8.9	75
7	Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools. Physica Medica, 2021, 83, 25-37.	0.7	63
8	Statistical Shape Modeling of the Left Ventricle: Myocardial Infarct Classification Challenge. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 503-515.	6.3	61
9	Outlier Detection and Handling for Robust 3-D Active Shape Models Search. IEEE Transactions on Medical Imaging, 2007, 26, 212-222.	8.9	59
10	Automatic initialization and quality control of large-scale cardiac MRI segmentations. Medical Image Analysis, 2018, 43, 129-141.	11.6	48
11	Statistical Interspace Models (SIMs): Application to Robust 3D Spine Segmentation. IEEE Transactions on Medical Imaging, 2015, 34, 1663-1675.	8.9	44
12	Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magnetic Resonance in Medicine, 2014, 72, 1775-1784.	3.0	35
13	Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank. Frontiers in Cardiovascular Medicine, 2020, 7, 591368.	2.4	32
14	Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models. IEEE Transactions on Medical Imaging, 2015, 34, 1627-1639.	8.9	31
15	Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease. Scientific Reports, 2022, 12, 3551.	3.3	31
16	A General Framework for Context-Specific Image Segmentation Using Reinforcement Learning. IEEE Transactions on Medical Imaging, 2013, 32, 943-956.	8.9	25
17	A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI. Lecture Notes in Computer Science, 2018, , 82-90.	1.3	25
18	Statistical Personalization of Ventricular Fiber Orientation Using Shape Predictors. IEEE Transactions on Medical Imaging, 2014, 33, 882-890.	8.9	23

#	Article	IF	CITATIONS
19	Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge. Medical Image Analysis, 2022, 81, 102528.	11.6	22
20	Statistical estimation of femur micro-architecture using optimal shape and density predictors. Journal of Biomechanics, 2015, 48, 598-603.	2.1	18
21	Learning to combine complementary segmentation methods for fetal and 6-month infant brain MRI segmentation. Computerized Medical Imaging and Graphics, 2018, 69, 52-59.	5.8	17
22	Repeatability of Cardiac Magnetic Resonance Radiomics: A Multi-Centre Multi-Vendor Test-Retest Study. Frontiers in Cardiovascular Medicine, 2020, 7, 586236.	2.4	17
23	Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors. Annals of Biomedical Engineering, 2016, 44, 234-246.	2.5	15
24	Vessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation. Medical Image Analysis, 2022, 75, 102263.	11.6	15
25	A framework for optimal kernel-based manifold embedding of medical image data. Computerized Medical Imaging and Graphics, 2015, 41, 93-107.	5.8	14
26	Pattern and degree of left ventricular remodeling following a tailored surgical approach for hypertrophic obstructive cardiomyopathy. Global Cardiology Science & Practice, 2012, 2012, 9.	0.4	13
27	Women With Diabetes Are at Increased Relative Risk of Heart Failure Compared to Men: Insights From UK Biobank. Frontiers in Cardiovascular Medicine, 2021, 8, 658726.	2.4	13
28	New Imaging Signatures of Cardiac Alterations in Ischaemic Heart Disease and Cerebrovascular Disease Using CMR Radiomics. Frontiers in Cardiovascular Medicine, 2021, 8, 716577.	2.4	12
29	A framework for the merging of pre-existing and correspondenceless 3D statistical shape models. Medical Image Analysis, 2014, 18, 1044-1058.	11.6	11
30	Statistical Shape Modeling Using Partial Least Squares: Application to the Assessment of Myocardial Infarction. Lecture Notes in Computer Science, 2016, , 130-139.	1.3	10
31	Predictive Modeling of Cardiac Fiber Orientation Using the Knutsson Mapping. Lecture Notes in Computer Science, 2011, 14, 50-57.	1.3	10
32	Editorial: Current and Future Role of Artificial Intelligence in Cardiac Imaging. Frontiers in Cardiovascular Medicine, 2020, 7, 137.	2.4	9
33	Identifying causative mechanisms linking early-life stress to psycho-cardio-metabolic multi-morbidity: The EarlyCause project. PLoS ONE, 2021, 16, e0245475.	2.5	9
34	Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance. Frontiers in Cardiovascular Medicine, 2021, 8, 764312.	2.4	9
35	Considerations for artificial intelligence clinical impact in oncologic imaging: an AI4HI position paper. Insights Into Imaging, 2022, 13, 89.	3.4	9
36	Protective Role of False Tendon in Subjects with Left Bundle Branch Block: A Virtual Population Study. PLoS ONE, 2016, 11, e0146477.	2.5	8

3

#	Article	IF	CITATIONS
37	Effect of Statistically Derived Fiber Models on the Estimation of Cardiac Electrical Activation. IEEE Transactions on Biomedical Engineering, 2014, 61, 2740-2748.	4.2	7
38	Associations of Meat and Fish Consumption With Conventional and Radiomics Cardiovascular Magnetic Resonance Phenotypes in the UK Biobank. Frontiers in Cardiovascular Medicine, 2021, 8, 667849.	2.4	7
39	Data sharing platforms: instruments to inform and shape science policy on data sharing?. Scientometrics, 2022, 127, 3007-3019.	3.0	7
40	Joint Clustering and Component Analysis of Correspondenceless Point Sets: Application to Cardiac Statistical Modeling. Lecture Notes in Computer Science, 2015, 24, 98-109.	1.3	6
41	LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases. Environmental Epidemiology, 2022, 6, e184.	3.0	6
42	A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT. IEEE Transactions on Medical Imaging, 2015, 34, 1747-1759.	8.9	4
43	Statistically-driven 3D fiber reconstruction and denoising from multi-slice cardiac DTI using a Markov random field model. Medical Image Analysis, 2016, 27, 105-116.	11.6	3
44	An atlas―and dataâ€driven approach to initializing reactionâ€diffusion systems in computer cardiac electrophysiology. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2846.	2.1	3
45	An agenda-setting paper on data sharing platforms: euCanSHare workshop. Open Research Europe, 0, 1, 80.	2.0	3
46	Estimation of trabecular bone parameters in children from multisequence MRI using textureâ€based regression. Medical Physics, 2016, 43, 3071-3079.	3.0	2
47	Center Dropout: A Simple Method forÂSpeed andÂFairness inÂFederated Learning. Lecture Notes in Computer Science, 2022, , 481-493.	1.3	1
48	Inter-Point Procrustes: Identifying Regional and Large Differences in 3D Anatomical Shapes. Lecture Notes in Computer Science, 2012, 15, 99-106.	1.3	0