
Brigita TomÅ;iÄ•

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6920122/publications.pdf Version: 2024-02-01

ΒΡΙCITA ΤΟΜΑ³ιΙΑ₆

#	Article	IF	CITATIONS
1	Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Solâ^'Gel Coatings for Cotton Fabrics. Langmuir, 2009, 25, 5869-5880.	3.5	180
2	Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. Journal of Sol-Gel Science and Technology, 2008, 47, 44-57.	2.4	151
3	Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydrate Polymers, 2009, 75, 618-626.	10.2	134
4	Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. Cellulose, 2015, 22, 1893-1910.	4.9	112
5	Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydrate Polymers, 2007, 69, 478-488.	10.2	94
6	The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose, 2013, 20, 277-289.	4.9	91
7	Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials, 2021, 11, 2354.	4.1	65
8	Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 100890.	3.0	64
9	Biodegradation of silver functionalised cellulose fibres. Carbohydrate Polymers, 2010, 80, 426-435.	10.2	60
10	Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol–gel finishing procedure. Journal of Sol-Gel Science and Technology, 2012, 61, 340-354.	2.4	56
11	Novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol–gel process. Cellulose, 2014, 21, 2611-2623.	4.9	43
12	Antimicrobial cotton fibres prepared by in situ synthesis of AgCl into a silica matrix. Cellulose, 2012, 19, 1715-1729.	4.9	35
13	Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibres with improved ice-releasing properties and passive antibacterial activity prepared via the sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 70, 385-399.	2.4	33
14	Embedment of silver into temperature- and pH-responsive microgel for the development of smart textiles with simultaneous moisture management and controlled antimicrobial activities. Carbohydrate Polymers, 2017, 159, 161-170.	10.2	31
15	Antibacterial Activity and Biodegradation of Cellulose Fiber Blends with Incorporated ZnO. Materials, 2019, 12, 3399.	2.9	29
16	Functionalization of cotton with poly-NiPAAm/chitosan microgel: Part II. Stimuli-responsive liquid management properties. Cellulose, 2012, 19, 273-287.	4.9	28
17	Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix. Colloids and Surfaces B: Biointerfaces, 2013, 111, 517-522.	5.0	28
18	Multifunctional antibacterial and ultraviolet protective cotton cellulose developed by in situ biosynthesis of silver nanoparticles into a polysiloxane matrix mediated by sumac leaf extract. Applied Surface Science, 2021, 563, 150361.	6.1	25

Brigita TomÅiiÄ•

#	Article	IF	CITATIONS
19	Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment. Journal Physics D: Applied Physics, 2016, 49, 324002.	2.8	23
20	Structural optimisation of a multifunctional water- and oil-repellent, antibacterial, and flame-retardant sol–gel coating on cellulose fibres. Cellulose, 2017, 24, 1511-1528.	4.9	22
21	Bacteriostatic photocatalytic properties of cotton modified with TiO2 and TiO2/aminopropyltriethoxysilane. Cellulose, 2015, 22, 3441-3463.	4.9	20
22	Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO2/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties. Applied Surface Science, 2022, 595, 153521.	6.1	19
23	The influence of coating with aminopropyl triethoxysilane and CuO/Cu 2 O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. Journal of Applied Polymer Science, 2020, 137, 49194.	2.6	18
24	Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane. Fibers and Polymers, 2016, 17, 695-704.	2.1	17
25	Preparation of novel fibre–silica–Ag composites: the influence of fibre structure on sorption capacity and antimicrobial activity. Journal of Materials Science, 2014, 49, 3785-3794.	3.7	16
26	Surface properties of cellulose modified by imidazolidinone. Cellulose, 2008, 15, 47-58.	4.9	15
27	Tailoring of multifunctional cellulose fibres with "lotus effect―and flame retardant properties. Cellulose, 2014, 21, 595-605.	4.9	14
28	Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic "lotus effect―on cotton fibres. Cellulose, 2016, 23, 3301-3318.	4.9	14
29	Characterisation and functional properties of antimicrobial bio-barriers formed by natural fibres. Colloids and Surfaces B: Biointerfaces, 2014, 122, 72-78.	5.0	13
30	Sol–gel technology for functional finishing of PES fabric by stimuli-responsive microgel. Journal of Sol-Gel Science and Technology, 2012, 61, 463-476.	2.4	12
31	Combining polyNiPAAm/chitosan microgel and bio-barrier polysiloxane matrix to create smart cotton fabric with responsive moisture management and antibacterial properties: influence of the application process. Journal of Sol-Gel Science and Technology, 2017, 83, 19-34.	2.4	12
32	Smart Stimuli-Responsive Polylactic Acid-Hydrogel Fibers Produced via Electrospinning. Fibers and Polymers, 2019, 20, 1857-1868.	2.1	11
33	Influence of non-thermal plasma treatement on the adsorption of a stimuli-responsive nanogel onto polyethylene terephthalate fabric. Progress in Organic Coatings, 2018, 120, 198-207.	3.9	9
34	The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric. Cellulose, 2017, 24, 4533-4545.	4.9	8
35	Tailoring of temperature- and pH-responsive cotton fabric with antimicrobial activity: Effect of the concentration of a bio-barrier-forming agent. Carbohydrate Polymers, 2017, 174, 677-687.	10.2	6
36	Comparison of responsive behaviour of smart PLA fabrics applied with temperature and pH responsive microgel and nanogel. Progress in Organic Coatings, 2018, 124, 213-223.	3.9	6

Brigita TomÅiiÄ•

#	Article	IF	CITATIONS
37	Biodegradation of cellulose fibers functionalized with CuO/Cu2O nanoparticles in combination with polycarboxylic acids. Cellulose, 0, , 1.	4.9	6
38	Influence of the structure of a bio-barrier forming agent on the stimuli-response and antimicrobial activity of a "smart―non-cytotoxic cotton fabric. Cellulose, 2018, 25, 6231-6245.	4.9	5
39	Proactive Release of Antimicrobial Essential Oil from a "Smart―Cotton Fabric. Coatings, 2019, 9, 242.	2.6	5
40	New Insights into Antibacterial and Antifungal Properties, Cytotoxicity and Aquatic Ecotoxicity of Flame Retardant PA6/DOPO-Derivative Nanocomposite Textile Fibers. Polymers, 2021, 13, 905.	4.5	5
41	Influence of the nanotechnological process of chemical modification on the antimicrobial activity and biodegradability of textile fibres. Tekstilec, 2017, 60, 14-24.	0.6	5
42	Biodegradation of cotton fabric impregnated with TiO2 nanoparticles. Journal of the Serbian Chemical Society, 2019, 84, 743-755.	0.8	5
43	Application of Stimuli Responsive Microgel for Creation of Smart Cotton Fabric with Antibacterial Properties. Tekstilec, 2016, 59, 142-148.	0.6	2
44	Influence of Hydrogen Peroxide on Disinfection and Soil Removal during Low-Temperature Household Laundry. Molecules, 2022, 27, 195.	3.8	2