Bao-Hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/691944/publications.pdf Version: 2024-02-01

ΒΛΟ-ΗΠΛ CHEN

#	Article	IF	CITATIONS
1	K ₂ S ₂ O ₈ -promoted rearrangement of nitrones for the synthesis of benzo[<i>d</i>]oxazoles. Organic Chemistry Frontiers, 2022, 9, 4034-4040.	4.5	4
2	Rhodium(III)-catalyzed chemodivergent annulations between phenyloxazoles and diazos via C–H activation. Chinese Chemical Letters, 2021, 32, 695-699.	9.0	13
3	Indolizine synthesis <i>via</i> radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Organic Chemistry Frontiers, 2021, 8, 4177-4182.	4.5	15
4	Rhodium-catalyzed <i>ortho</i> -acrylation of aryl ketone <i>O</i> -methyl oximes with cyclopropenones. Organic and Biomolecular Chemistry, 2020, 18, 3823-3826.	2.8	7
5	Diiodine-Mediated Oxidative Reaction for the Construction of Imidazo[1,5-a]pyridines under Metal-Free Conditions. Synlett, 2020, 31, 695-698.	1.8	4
6	Synthesis of Pyridine Derivatives from Acetophenone and Ammonium Acetate by Releasing CH 4. Asian Journal of Organic Chemistry, 2019, 8, 1332-1335.	2.7	7
7	Synthesis of Pyrimidines with Ammonium Acetate as Nitrogen Source Under Solventâ€Free Conditions. Asian Journal of Organic Chemistry, 2019, 8, 1122-1127.	2.7	12
8	Acid-catalyzed synthesis of imidazole derivatives via N-phenylbenzimidamides and sulfoxonium ylides cyclization. Tetrahedron, 2019, 75, 2817-2823.	1.9	13
9	Recent Developments in the Synthesis of Nitrogen-Containing Heterocycles through C–H/N–H Bond Functionalizations and Oxidative Cyclization. Synlett, 2019, 30, 1026-1036.	1.8	17
10	Rhodium(<scp>iii</scp>)-catalyzed [3 + 3] annulation reactions of <i>N</i> -nitrosoanilines and cyclopropenones: an approach to functionalized 4-quinolones. Organic Chemistry Frontiers, 2019, 6, 3973-3977.	4.5	28
11	Baseâ€Promoted Oxidative C(sp ³)–S Bond Cross oupling of Inactive Fluorenes and Thiols for the Synthesis of 9â€Monothiolated Fluorenes. European Journal of Organic Chemistry, 2019, 2019, 1649-1652.	2.4	2
12	I ₂ â€Catalyzed Synthesis of Disulfides by NaBH ₄ Mediated Reductive Coupling of Phenylsulfonyl Imidazoles. ChemistrySelect, 2018, 3, 997-999.	1.5	2
13	Copperâ€Catalyzed Cyclization of Ketoxime Carboxylates and <i>N</i> â€Aryl Glycine Esters for the Synthesis of Pyridines. Asian Journal of Organic Chemistry, 2018, 7, 692-696.	2.7	11
14	CuBrâ€Catalyzed Synthesis of Indolizines from Pyridine, Acetophenone and Chalcone under Solventâ€Free Conditions. ChemistrySelect, 2018, 3, 3014-3017.	1.5	8
15	Metal-free iodine(<scp>iii</scp>)-promoted synthesis of 2,5-diaryloxazoles. Organic and Biomolecular Chemistry, 2018, 16, 3104-3108.	2.8	21
16	Heterogeneous Esterification from α-Hydroxy Ketone and Alcohols through a Tandem Oxidation Process over a Hydrotalcite-Supported Bimetallic Catalyst. Organic Process Research and Development, 2018, 22, 1716-1722.	2.7	11
17	Efficient 2-aryl benzothiazole formation from acetophenones, anilines, and elemental sulfur by iodine-catalyzed oxidative C(CO)-C(alkyl) bond cleavage. Tetrahedron, 2018, 74, 6057-6062.	1.9	27
18	Elemental Sulfur Participates in the Decarboxylative Coupling of Oxidized 2â€Aminophenol and Phenylglyoxylic Acid. ChemistrySelect, 2018, 3, 5541-5543.	1.5	8

BAO-HUA CHEN

#	Article	IF	CITATIONS
19	Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: an active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines. Green Chemistry, 2018, 20, 4638-4644.	9.0	50
20	Nickel(<scp>ii</scp>)-catalyzed tandem C(sp ²)–H bond activation and annulation of arenes with <i>gem</i> -dibromoalkenes. RSC Advances, 2018, 8, 28668-28675.	3.6	7
21	I ₂ /TBPB Mediated Oxidative Reaction to Construct of Imidazo[1,5â€Î±]pyridines under Metalâ€Free Conditions. Asian Journal of Organic Chemistry, 2018, 7, 1591-1594.	2.7	10
22	A practical metal-free route to 1,2,4,5-tetrasubstituted imidazoles derivatives from the annulation of amidines and β-keto esters. Tetrahedron Letters, 2017, 58, 870-873.	1.4	23
23	I ₂ /TBPB mediated oxidative reaction of aryl acetaldehydes with amidines: synthesis of 1,2,5-triaryl-1H-imidazoles. RSC Advances, 2017, 7, 24594-24597.	3.6	10
24	Convenient Access to C4â€Dicarbonylation of Anilines by Iodineâ€Promoted Oxidative Crossâ€Coupling Reactions. Asian Journal of Organic Chemistry, 2017, 6, 1398-1401.	2.7	4
25	Synthesis of 1,2,4â€Triazine Compounds via Two Distinct Oneâ€Pot Domino Protocols. Chinese Journal of Chemistry, 2017, 35, 1222-1226.	4.9	5
26	OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature. Journal of Organic Chemistry, 2017, 82, 6922-6931.	3.2	51
27	Oneâ€Pot Synthesis of Benzene and Pyridine Derivatives <i>via</i> Copperâ€Catalyzed Coupling Reactions. Advanced Synthesis and Catalysis, 2017, 359, 2676-2681.	4.3	43
28	A Regioselective Synthesis of 2,5-Diaryl Oxazoles via TsOH/I ₂ -Mediated Cascade Cyclization. ChemistrySelect, 2017, 2, 8717-8720.	1.5	6
29	Copper-Catalyzed Tandem Aerobic Oxidative Cyclization for the Synthesis of Polysubstituted Quinolines via C(sp ³)/C(sp ²)–H Bond Functionalization. Journal of Organic Chemistry, 2017, 82, 10110-10120.	3.2	35
30	Synthesis of 2,3-Disubstituted <i>NH</i> Indoles via Rhodium(III)-Catalyzed C–H Activation of Arylnitrones and Coupling with Diazo Compounds. Journal of Organic Chemistry, 2017, 82, 11505-11511.	3.2	43
31	OMS-2/H ₂ O ₂ /Dimethyl Carbonate: An Environmentally-Friendly Heterogeneous Catalytic System for the Oxidative Synthesis of Benzoxazoles at Room Temperature. Organic Process Research and Development, 2017, 21, 2018-2024.	2.7	22
32	A Transitionâ€Metalâ€Free Synthesis of Multisubstituted Imidazoles. Chinese Journal of Chemistry, 2016, 34, 363-367.	4.9	11
33	lodothiocyanation/Nitration of Allenes with Potassium Thiocyanate/Silver Nitrite and Iodine. Advanced Synthesis and Catalysis, 2016, 358, 3130-3134.	4.3	23
34	Synthesis of Polyfunctional Pyridines via Copper-Catalyzed Oxidative Coupling Reactions. Journal of Organic Chemistry, 2016, 81, 11671-11677.	3.2	44
35	Direct Access to 1,3,5-Trisubstituted 1H-1,2,4-Triazoles from N-Phenylbenzamidines via Copper-Catalyzed Diamination of Aryl Nitriles. Synthesis, 2016, 48, 3924-3930.	2.3	14
36	Synthesis of 1,2,4-triazine derivatives via [4Â+ 2] domino annulation reactions in one pot. RSC Advances, 2016, 6, 12514-12518.	3.6	30

BAO-HUA CHEN

#	Article	IF	CITATIONS
37	Copper supported on H ⁺ -modified manganese oxide octahedral molecular sieves (Cu/H-OMS-2) as a heterogeneous biomimetic catalyst for the synthesis of imidazo[1,2-a]-N-heterocycles. Catalysis Science and Technology, 2016, 6, 890-896.	4.1	62
38	Synthesis of 3â€Arylpyridines <i>via</i> Palladium/Copperâ€Catalyzed Annulation of Allylamine/1,3â€Propanediamine and Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 3732-3736.	4.3	10
39	Iron(III)/Iodineâ€Catalyzed C(<i>sp</i> ²)ï£;H Activation of α,βâ€Unsaturated Aldehydes/Ketones with Amidines: Synthesis of 1,2,4,5â€Tetrasubstituted Imidazoles. Advanced Synthesis and Catalysis, 2015, 357, 3868-3874.	4.3	40
40	Iron atalyzed Cross Dehydrogenative Coupling (CDC) of Indoles and Benzylic CH Bonds. Advanced Synthesis and Catalysis, 2015, 357, 950-954.	4.3	35
41	I ₂ -Catalyzed diamination of acetyl-compounds for the synthesis of multi-substituted imidazoles. New Journal of Chemistry, 2015, 39, 4235-4239.	2.8	29
42	An I ₂ -catalyzed oxidative cyclization for the synthesis of indolizines from aromatic/aliphatic olefins and α-picoline derivatives. RSC Advances, 2015, 5, 29424-29427.	3.6	19
43	Copper-catalyzed oxidative coupling reaction of α,β-unsaturated aldehydes with amidines: synthesis of 1,2,4-trisubstituted-1H-imidazole-5-carbaldehydes. Organic Chemistry Frontiers, 2015, 2, 1632-1636.	4.5	29
44	NBSâ€Mediated Aziridination between Styrenes and Amides under Transition Metalâ€Free Conditions. Journal of Heterocyclic Chemistry, 2014, 51, 937-942.	2.6	6
45	Copper and zinc co-catalyzed synthesis of imidazoles via the activation of sp3 C–H and N–H bonds. Tetrahedron, 2014, 70, 4038-4042.	1.9	20
46	â€~Green' synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Letters, 2014, 55, 7026-7028.	1.4	23
47	Oneâ€Pot Synthesis of 4â€Substituted 1 <i>H</i> â€[1,2,3]triazolo[4,5â€ <i>c</i>]quinolines Through CuOâ€Promoted Tandem Cyclization Reactions of (<i>E</i>)â€3â€(2â€Bromoaryl)â€1â€arylpropâ€2â€enâ€1â€e Sodium Azide. European Journal of Organic Chemistry, 2013, 2013, 6246-6248.	on es iwith	13
48	Iron(III)â€Catalyzed Synthesis of 1,2,4â€Trisubstituted Imidazoles through the Reactions of Amidines and Aldehydes in Air. Advanced Synthesis and Catalysis, 2013, 355, 2798-2802.	4.3	36
49	Iron(III)-catalyzed synthesis of multi-substituted imidazoles via [3+2] cycloaddition reaction of nitroolefins and N-aryl benzamidines. Tetrahedron, 2013, 69, 9417-9421.	1.9	42
50	Cu(I)â€Catalyzed Synthesis of 2â€Substituted Benzimidazoles from 2â€lodoanilines and Amides. Chinese Journal of Chemistry, 2013, 31, 1247-1249.	4.9	10
51	Cu(II)-catalyzed synthesis of quinoxalines from o-phenylenediamines and nitroolefins. Tetrahedron Letters, 2013, 54, 1627-1630.	1.4	26
52	Synthesis of Multisubstituted Imidazoles via Copper-Catalyzed [3 + 2] Cycloadditions. Journal of Organic Chemistry, 2013, 78, 2746-2750.	3.2	78
53	Palladium atalyzed Direct Denitrogenative Câ€3â€Arylation of 1 <i>H</i> â€Indoles with Arylhydrazines using Air as the Oxidant. Advanced Synthesis and Catalysis, 2013, 355, 711-715.	4.3	87
54	One-pot synthesis of 2,4,5-trisubstituted 1,2,3-triazoles through the cascade reactions of acid chlorides, terminal acetylenes, sodium azide and aryl halides. New Journal of Chemistry, 2013, 37, 965.	2.8	11

BAO-HUA CHEN

#	Article	IF	CITATIONS
55	Oneâ€pot Fourâ€component Synthesis of N2â€5ubstituted 1,2,3â€Triazoles. Asian Journal of Organic Chemistry, 2013, 2, 212-215.	2.7	7
56	Iron(III)â€Catalyzed Direct <i>N</i> â€Alkylation of Azoles via Oxidative Transformation of sp ³ CH Bonds under Solventâ€Free Conditions. Chinese Journal of Chemistry, 2012, 30, 2285-2291.	4.9	18
57	tBuOLi-Mediated Alkynylation of Aldehydes. Synthetic Communications, 2011, 41, 1208-1217.	2.1	5
58	Synthesis, Crystal Structure, Photoluminescent, and Electrochemical Properties of a Novel 2-D silver(I) Coordination Polymer with 1H-1,2,4-Triazole-1-Methylene-1H-Benzimidazole-1-Acetic Acid. Journal of Chemical Crystallography, 2011, 41, 806-810.	1.1	13
59	One-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles using terminal acetylenes, carbon monoxide, aryl iodides, and sodium azide. Tetrahedron Letters, 2011, 52, 980-982.	1.4	25
60	Zn/C atalyzed Cycloaddition of Azides and Aryl Alkynes. European Journal of Organic Chemistry, 2010, 2010, 5409-5414.	2.4	102
61	An efficient approach to homocoupling of terminal alkynes: Solvent-free synthesis of 1,3-diynes using catalyticCu(ii) and base. Green Chemistry, 2010, 12, 45-48.	9.0	112
62	Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chemistry, 2010, 12, 2120.	9.0	136
63	Convenient Synthesis of Ferrocenylethynyl Ketones via Carbonylative Coupling of Ferrocenylethyne with Aryl Iodides by Using Water as Solvent. Catalysis Letters, 2009, 127, 152-157.	2.6	7
64	Palladium-, copper- and water solvent facile preparation of ferrocenylethynyl ketones by coupling. Catalysis Communications, 2008, 9, 2127-2130.	3.3	12
65	Convenient Synthesis of Aryl Ferrocenyl Ketone via Palladiumâ€Catalyzed Carbonylation Coupling. Synthetic Communications, 2007, 37, 3759-3765.	2.1	8
66	SOLID-PHASE SYNTHESIS OF FERROCENYLCHALKONE. Synthetic Communications, 2002, 32, 171-174.	2.1	14
67	AN IMPROVED METHOD FOR THE ESTERIFICATION OF AROMATIC ACIDS WITH ETHANOL AND METHANOL. Synthetic Communications, 2001, 31, 2113-2117.	2.1	6
68	L,L'-Diacetylferrocenebis(5-Phenyl-L,3-Oxazol-2-Ylcarbonyl)Hydrazone and Its Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2000, 30, 533-542.	1.8	1
69	Transition metal(II) complexes of (E)-cinnamoylferrocene (S)-methylcarbodithioylhydrazone. Transition Metal Chemistry, 1998, 23, 589-592.	1.4	6
70	(E)-Cinnamoylferrocene S-Methylcarbo-Dithioylhydrazone and Its Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1998, 28, 803-810.	1.8	12
71	Aroyl Hydrazones Containing Triazole and Their Divalent Nickel Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1997, 27, 479-486.	1.8	7