Bao-Hua Chen

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/691944/publications.pdf
Version: 2024-02-01

2 Rhodium(III)-catalyzed chemodivergent annulations between phenyloxazoles and diazos via Câ€" H activation. Chinese Chemical Letters, 2021, 32, 695-699.

Indolizine synthesis <i>via</i> radical cyclization and demethylation of sulfoxonium ylides and
4.5

2-(pyridin-2-yl)acetate derivatives. Organic Chemistry Frontiers, 2021, 8, 4177-4182.
15
$4 \begin{aligned} & \text { Rhodium-catalyzed <i>ortho</i>-acrylation of aryl ketone <i>O</i>-methyl oximes with } \\ & \text { cyclopropenones. Organic and Biomolecular Chemistry, 2020, 18, 3823-3826. }\end{aligned}$
$4 \begin{aligned} & \text { Rhodium-catalyzed <i>ortho</i>-acrylation of aryl ketone <i>O }<\text { <i>-methyl oxim } \\ & \text { cyclopropenones. Organic and Biomolecular Chemistry, 2020, 18, 3823-3826. }\end{aligned}$
2.8

7

5 Diiodine-Mediated Oxidative Reaction for the Construction of Imidazo[1,5-a]pyridines under Metal-Free
Conditions. Synlett, 2020, 31, 695-698.
1.8

Synthesis of Pyridine Derivatives from Acetophenone and Ammonium Acetate by Releasing CH 4. Asian
Journal of Organic Chemistry, 2019, 8, 1332-1335.
$\begin{array}{ll}2.7 & 7\end{array}$

7 Synthesis of Pyrimidines with Ammonium Acetate as Nitrogen Source Under Solventâ€Free Conditions.
$7 \quad$ Asian Journal of Organic Chemistry, 2019, 8, 1122-1127.
2.712

8 Acid-catalyzed synthesis of imidazole derivatives via N -phenylbenzimidamides and sulfoxonium ylides cyclization. Tetrahedron, 2019, 75, 2817-2823.

9	Recent Developments in the Synthesis of Nitrogen-Containing Heterocycles through Câ $\epsilon^{\prime \prime} \mathrm{H} / \mathrm{Nâ} €^{\prime \prime} \mathrm{H}$ Bond Functionalizations and Oxidative Cyclization. Synlett, 2019, 30, 1026-1036.	1.8	17
10	Rhodium(<scp>iii</scp>)-catalyzed [3+3] annulation reactions of <i>N</i>-nitrosoanilines and cyclopropenones: an approach to functionalized 4-quinolones. Organic Chemistry Frontiers, 2019, 6, 3973-3977.	4.5	28
11	Baseâ€Promoted Oxidative C(sp³)â€"S Bond Crossâ€Coupling of Inactive Fluorenes and Thiols for the Synthesis of 9â€Monothiolated Fluorenes. European Journal of Organic Chemistry, 2019, 2019, 1649-1652.	2.4	2

L₂â€Catalyzed Synthesis of Disulfides by NaBH₄ Mediated Reductive Coupling of
Phenylsulfonyl Imidazoles. ChemistrySelect, 2018, 3, $997-999$.
13 Copperâ€Catalyzed Cyclization of Ketoxime Carboxylates and <i>N</i>â€Aryl Clycine Esters for the
Synthesis of Pyridines. Asian Journal of Organic Chemistry, 2018, 7, 692-696.
$2.7 \quad 11$

CuBrâ€€atalyzed Synthesis of Indolizines from Pyridine, Acetophenone and Chalcone under Solventâ $€$ Free Conditions. ChemistrySelect, 2018, 3, 3014-3017.
$1.5 \quad 8$

Metal-free iodine(<scp>iii</scp>)-promoted synthesis of 2,5-diaryloxazoles. Organic and Biomolecular
Chemistry, 2018, 16, 3104-3108.
2.8

Heterogeneous Esterification from $\hat{I}_{ \pm}-H y d r o x y$ Ketone and Alcohols through a Tandem Oxidation
16 Process over a Hydrotalcite-Supported Bimetallic Catalyst. Organic Process Research and
2.7

Development, 2018, 22, 1716-1722.

Efficient 2-aryl benzothiazole formation from acetophenones, anilines, and elemental sulfur by
1.9

27
Ball-milling synthesized hydrotalcite supported Cuâ€"Mn mixed oxide under solvent-free conditions: an
active catalyst for aerobic oxidative synthesis of 2 -acylbenzothiazoles and quinoxalines. Green
Chemistry, 2018, 20, 4638-4644.

Nickel(<scp>ii<|scp>)-catalyzed tandem C(sp²)â $€^{\prime \prime} \mathrm{H}$ bond activation and annulation of arenes with <i>gem</i>-dibromoalkenes. RSC Advances, 2018, 8, 28668-28675.

$23 \quad$| $\mid<$ sub $>2<\mid$ sub $>/$ TBPB mediated oxidative reaction of aryl acetaldehydes with amidines: synthesis of |
| :--- |
| $1,2,5$-triaryl-1H-imidazoles. RSC Advances, $2017,7,24594-24597$. |

Convenient Access to C4â€ $\mathfrak{C i c a r b o n y l a t i o n ~ o f ~ A n i l i n e s ~ b y ~ l o d i n e a ̂ € P r o m o t e d ~ O x i d a t i v e ~ C r o s s a ̂ € € o u p l i n g ~}$
Reactions. Asian Journal of Organic Chemistry, 2017, 6, 1398-1401.
2.74

5
4.9

Synthesis of $1,2,4$ â€ riazine Compounds via Two Distinct Oneâ€Pot Domino Protocols. Chinese Journal of

Chemistry, 2017, 35, 1222-1226.
$25 \quad$ Chemistry, 2017, 35, 1222-1226.OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines viaDomino Oxidation Process at Room Temperature. Journal of Organic Chemistry, 2017, 82, 6922-6931.
3.2
$27 \begin{aligned} & \text { Oneâ€Pot Synthesis of Benzene and Pyridine Derivatives <i> via</i> Copperâ€Catalyzed Coupling } \\ & \text { Advanced Synthesis and Catalysis, 2017, 359, 2676-2681. }\end{aligned}$ Cyclization. ChemistrySelect, 2017, 2, 8717-8720.

29	Copper-Catalyzed Tandem Aerobic Oxidative Cyclization for the Synthesis of Polysubstituted Quinolines via C(sp³)\|C(sp²)ấ"H Bond Functionalization. Journal of Organic Chemistry, 2017, 82, 10110-10120.	3.2	35
30	Synthesis of 2,3-Disubstituted <i>NH</i> Indoles via Rhodium(III)-Catalyzed Câ€"H Activation of AryInitrones and Coupling with Diazo Compounds. Journal of Organic Chemistry, 2017, 82, 11505-11511.	3.2	43
31	OMS-2/H<sub>2<\|sub> $\mathrm{O}<$ sub $>2<\mid$ sub > \|Dimethyl Carbonate: An Environmentally-Friendly Heterogeneous Catalytic System for the Oxidative Synthesis of Benzoxazoles at Room Temperature. Organic Process Research and Development, 2017, 21, 2018-2024.	2.7	22

32 A Transitionâ
Copper supported on $\mathrm{H}<$ sup $>+\langle/$ sup $>-$ modified manganese oxide octahedral molecular sieves
(Cu/H-OMS-2) as a heterogeneous biomimetic catalyst for the synthesis of
imidazo[1,2-a]-N-heterocycles. Catalysis Science and Technology, 2016, 6, 890-896.
imidazo[1,2-a]-N-heterocycles. Catalysis Science and Technology, 2016, 6, 890-896.
Synthesis of 3â€Arylpyridines <i>via</i> Palladium/Copperâ€€atalyzed Annulation of
Allylamine/l,3â€Propanediamine and Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 3732-3736.

40 Ironâ€ 6 atalyzed Cross Dehydrogenative Coupling (CDC) of Indoles and Benzylic Cḯ ¿H Bonds. Advanced
$4.3 \quad 35$
Synthesis and Catalysis, 2015, 357, 950-954.
|₂-Catalyzed diamination of acetyl-compounds for the synthesis of multi-substituted
imidazoles. New Journal of Chemistry, 2015, 39, 4235-4239.
$2.8 \quad 29$

An l ₂-catalyzed oxidative cyclization for the synthesis of indolizines from
aromatic/aliphatic olefins and $\hat{I} \pm-$ picoline derivatives. RSC Advances, 2015, 5, 29424-29427.
3.6

Copper-catalyzed oxidative coupling reaction of $\hat{l} \pm, \hat{\imath}^{2}$-unsaturated aldehydes with amidines: synthesis of
1,2,4-trisubstituted-1H-imidazole-5-carbaldehydes. Organic Chemistry Frontiers, 2015, 2, 1632-1636.
4.5

29

44 NBSâ€Mediated Aziridination between Styrenes and Amides under Transition Metalâ€Free Conditions.
Journal of Heterocyclic Chemistry, 2014, 51, 937-942.
2.6

6

45	Copper and zinc co-catalyzed synthesis of imidazoles via the activation of sp3 Câ€"H and Nâ€"H bonds. Tetrahedron, 2014, 70, 4038-4042.
46	$\hat{a} €^{\sim}$ Greenâ $€^{\text {TM }}$ synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Letters, 2014, 55, 7026-7028.
47	Oneâ€Pot Synthesis of $4 \hat{€} €$ Substituted $1<i>H<\mid i>a ̂ €\{1,2,3]$ triazolo[4,5â€<i>c</i>]quinolines Through Sodium Azide. European Journal of Organic Chemistry, 2013, 2013, 6246-6248.
48	Iron(III)â€€atalyzed Synthesis of 1,2,4â€đrisubstituted Imidazoles through the Reactions of Amidines and Aldehydes in Air. Advanced Synthesis and Catalysis, 2013, 355, 2798-2802.
49	Iron(III)-catalyzed synthesis of multi-substituted imidazoles via [3+2] cycloaddition reaction of nitroolefins and N-aryl benzamidines. Tetrahedron, 2013, 69, 9417-9421.

$50 \mathrm{Cu}(\mathrm{I}) \mathrm{â} € \in$ Catalyzed Synthesis of $2 \hat{\mathrm{a}} €$ Substituted Benzimidazoles from 2â€łodoanilines and Amides. Chinese

```
55 Oneâ€pot Fourâ€component Synthesis of N2â€Substituted 1,2,3â€`riazoles. Asian Journal of Organic Chemistry,
2013, 2, 212-215.
```

Iron(III)â€€atalyzed Direct <i>N</i>â€Alkylation of Azoles via Oxidative Transformation of sp³ Cií $\AA_{i} H$ Bonds under Solventâ $€$ Free Conditions. Chinese Journal of Chemistry, 2012, 30, 2285-2291.
$4.9 \quad 18$

Synthesis, Crystal Structure, Photoluminescent, and Electrochemical Properties of a Novel 2-D
58 silver(I) Coordination Polymer with 1H-1,2,4-Triazole-1-Methylene-1H-Benzimidazole-1-Acetic Acid.
1.1

13 Journal of Chemical Crystallography, 2011, 41, 806-810.

59 One-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles using terminal acetylenes, carbon monoxide, aryl iodides, and sodium azide. Tetrahedron Letters, $2011,52,980-982$.
1.4

25

Zn/Câ€Catalyzed Cycloaddition of Azides and Aryl Alkynes. European Journal of Organic Chemistry, 2010, 2010, 5409-5414.
2.4

```
61 An efficient approach to homocoupling of terminal alkynes: Solvent-free synthesis of 1,3 -diynes using
``` catalyticCu(ii) and base. Green Chemistry, 2010, 12, 45-48.
\(9.0 \quad 112\)

62 Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of \(\mathrm{Cu}(\mathrm{PPh} 3) 2 \mathrm{NO} 3\) complex. Green Chemistry, 2010, 12, 2120.
9.0

136
Convenient Synthesis of Ferrocenylethynyl Ketones via Carbonylative Coupling of Ferrocenylethyne
with Aryl lodides by Using Water as Solvent. Catalysis Letters, 2009, 127, 152-157.
\(64 \quad\)\begin{tabular}{l}
Palladium-, copper- and water solvent facile preparation of ferrocenylethynyl ketones by coupling. \\
Catalysis Communications, 2008, 9, 2127-2130.
\end{tabular}
\(65 \quad\)\begin{tabular}{l}
Convenient Synthesis of Aryl Ferrocenyl Ketone via PalladiumấCatalyzed Carbonylation Coupling. \\
Synthetic Communications, 2007, 37, 3759-3765.
\end{tabular}

66 SOLID-PHASE SYNTHESIS OF FERROCENYLCHALKONE. Synthetic Communications, 2002, 32, 171-174. 2.1
AN IMPROVED METHOD FOR THE ESTERIFICATION OF AROMATIC ACIDS WITH ETHANOL AND METHANOL.
Synthetic Communications, 2001, 31, 2113-2117.

L,L'-Diacetylferrocenebis(5-Phenyl-L,3-Oxazol-2-Ylcarbonyl)Hydrazone and Its Complexes. Synthesis and
68 Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2000, 30, 533-542.
1.8

1

Transition metal(II) complexes of (E)-cinnamoylferrocene (S)-methylcarbodithioylhydrazone.
Transition Metal Chemistry, 1998, 23, 589-592.
1.4
(E)-Cinnamoylferrocene S-Methylcarbo-Dithioylhydrazone and Its Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1998, 28, 803-810.
1.8

12```

