
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6918795/publications.pdf Version: 2024-02-01

FLODIS | RIKKED

#	Article	IF	CITATIONS
1	The association between oral dryness and use of dry-mouth interventions in Sjögren's syndrome patients. Clinical Oral Investigations, 2022, 26, 1465-1475.	1.4	8
2	ls TIMPâ€1 a biomarker for periodontal disease? A systematic review and metaâ€analysis. Journal of Periodontal Research, 2022, 57, 235-245.	1.4	7
3	The relationship between the severity of oral dryness and the use of dry-mouth interventions by various subgroups of dry-mouth patients. Clinical Oral Investigations, 2022, 26, 3097-3108.	1.4	2
4	Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomaterialia, 2022, 141, 418-428.	4.1	11
5	Natural and Synthetic Sortase A Substrates Are Processed by <i>Staphylococcus aureus</i> via Different Pathways. Bioconjugate Chemistry, 2022, 33, 555-559.	1.8	4
6	Gramicidin A is hydrolyzed by a <scp>d</scp> â€stereospecific peptidase produced by <i>Bacillus anthracis</i> . Environmental Microbiology Reports, 2022, , .	1.0	0
7	Identification of VEGFR2 as the Histatin-1 receptor in endothelial cells. Biochemical Pharmacology, 2022, 201, 115079.	2.0	3
8	The minimal active domain of human salivary histatin 1 is efficacious in promoting acute skin wound healing. Military Medical Research, 2022, 9, .	1.9	1
9	Letter to the editor concerning Valstar et al., [Radiother Oncol 2020 Sep 23;S0167-8140(20)30809-4. doi: 10.1016/j.radonc.2020.09.034]. Radiotherapy and Oncology, 2021, 154, 318.	0.3	6
10	Differences in perceived intra-oral dryness in various dry-mouth patients as determined using the Regional Oral Dryness Inventory. Clinical Oral Investigations, 2021, 25, 4031-4043.	1.4	11
11	Histatinâ€l is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 336-346.	1.3	10
12	LFchimera: a synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochemistry and Cell Biology, 2021, 99, 128-137.	0.9	7
13	Lubricating properties of chewing stimulated whole saliva from patients suffering from xerostomia. Clinical Oral Investigations, 2021, 25, 4459-4469.	1.4	9
14	Comparing periodontitis biomarkers in saliva, oral rinse and gingival crevicular fluid: A pilot study. Journal of Clinical Periodontology, 2021, 48, 1250-1259.	2.3	12
15	The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules, 2021, 11, 1165.	1.8	49
16	Simple and rapid peptide nanoprobe biosensor for the detection of Legionellaceae. Analyst, The, 2021, 146, 3568-3577.	1.7	1
17	Effect of phytosphingosine on staining resistance and microhardness of tooth enamel. Journal of Esthetic and Restorative Dentistry, 2021, 33, 294-302.	1.8	11
18	Gingival tissue human betaâ€defensin levels in relation to infection and inflammation. Journal of Clinical Periodontology, 2020, 47, 309-318.	2.3	21

#	Article	IF	CITATIONS
19	Selective tumor antigen vaccine delivery to human CD169 ⁺ antigen-presenting cells using ganglioside-liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27528-27539.	3.3	54
20	A stepwise approach investigating salivary responses upon multisensory food cues. Physiology and Behavior, 2020, 226, 113116.	1.0	10
21	A novel gingipain regulatory gene in Porphyromonas gingivalis mediates host cell detachment and inhibition of wound closure. MicrobiologyOpen, 2020, 9, e1128.	1.2	0
22	Determination of intra-oral surface areas by cone-beam computed tomography analysis and their relation with anthrometric measurements of the head. Surgical and Radiologic Anatomy, 2020, 42, 1063-1071.	0.6	2
23	Human Salivary Histatin-1 Promotes Osteogenic Cell Spreading on Both Bio-Inert Substrates and Titanium SLA Surfaces. Frontiers in Bioengineering and Biotechnology, 2020, 8, 584410.	2.0	8
24	Elevated Baseline Salivary Protease Activity May Predict the Steadiness of Gingival Inflammation During Periodontal Healing: A 12-Week Follow-Up Study on Adults. Pathogens, 2020, 9, 751.	1.2	7
25	Human Salivary Histatin-1 Is More Efficacious in Promoting Acute Skin Wound Healing Than Acellular Dermal Matrix Paste. Frontiers in Bioengineering and Biotechnology, 2020, 8, 999.	2.0	10
26	Regional differences in perceived oral dryness as determined with a newly developed questionnaire, the Regional Oral Dryness Inventory. Clinical Oral Investigations, 2020, 24, 4051-4060.	1.4	13
27	Allâ€trans retinoic acid and human salivary histatinâ€1 promote the spreading and osteogenic activities of preâ€osteoblasts inÂvitro. FEBS Open Bio, 2020, 10, 396-406.	1.0	13
28	Salivary Histatin 1 and 2 Are Targeted to Mitochondria and Endoplasmic Reticulum in Human Cells. Cells, 2020, 9, 795.	1.8	11
29	Salivary Total Protease Activity Based on a Broad-Spectrum Fluorescence Resonance Energy Transfer Approach to Monitor Induction and Resolution of Gingival Inflammation. Molecular Diagnosis and Therapy, 2019, 23, 667-676.	1.6	19
30	Impact of food odors signaling specific taste qualities and macronutrient content on saliva secretion and composition. Appetite, 2019, 143, 104399.	1.8	28
31	DMBT1 inhibition of Pseudomonas aeruginosa twitching motility involves its N-glycosylation and cannot be conferred by the Scavenger Receptor Cysteine-Rich bacteria-binding peptide domain. Scientific Reports, 2019, 9, 13146.	1.6	8
32	A rapid, non-invasive tool for periodontitis screening in a medical care setting. BMC Oral Health, 2019, 19, 87.	0.8	46
33	Rapid Colorimetric Detection of <i>Pseudomonas aeruginosa</i> in Clinical Isolates Using a Magnetic Nanoparticle Biosensor. ACS Omega, 2019, 4, 21684-21688.	1.6	34
34	Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe, 2019, 55, 54-60.	1.0	24
35	On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Mikrochimica Acta, 2018, 185, 149.	2.5	18
36	Phytosphingosine Prevents the Formation of Young Salivary Biofilms in vitro. Caries Research, 2018, 52, 7-13.	0.9	9

#	Article	IF	CITATIONS
37	LFchimera protects HeLa cells from invasion by Yersinia spp. in vitro. BioMetals, 2018, 31, 941-950.	1.8	6
38	Anthrax protective antigen is a calcium-dependent serine protease. Virulence, 2018, 9, 1085-1091.	1.8	6
39	Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk. Analytical Biochemistry, 2017, 523, 58-64.	1.1	24
40	The scavenging capacity of DMBT1 is impaired by germline deletions. Immunogenetics, 2017, 69, 401-407.	1.2	12
41	Effects of lactoferrin derived peptides on simulants of biological warfare agents. World Journal of Microbiology and Biotechnology, 2017, 33, 3.	1.7	17
42	Antimicrobial and Immunomodulatory Activity of PMAP-23 Derived Peptides. Protein and Peptide Letters, 2017, 24, 609-616.	0.4	25
43	Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation. PLoS ONE, 2016, 11, e0147401.	1.1	14
44	Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides. PLoS ONE, 2016, 11, e0147919.	1.1	51
45	Comparison of non-magnetic and magnetic beads in bead-based assays. Journal of Immunological Methods, 2016, 436, 29-33.	0.6	14
46	Di-Calcium Phosphate and Phytosphingosine as an Innovative Acid-Resistant Treatment to Occlude Dentine Tubules. Caries Research, 2016, 50, 303-309.	0.9	12
47	Incorporation of a Valine–Leucine–Lysine-Containing Substrate in the Bacterial Cell Wall. Bioconjugate Chemistry, 2016, 27, 2418-2423.	1.8	2
48	Antiâ€erosive effects of fluoride and phytosphingosine: an in vitro study. European Journal of Oral Sciences, 2016, 124, 396-402.	0.7	13
49	Interspecies Interactions between Clostridium difficile and Candida albicans. MSphere, 2016, 1, .	1.3	74
50	PAI-2/SerpinB2 inhibits proteolytic activity in a P. gingivalis -dominated multispecies bacterial consortium. Archives of Oral Biology, 2016, 70, 1-8.	0.8	10
51	Antiâ€adherence and bactericidal activity of sphingolipids against <i><scp>S</scp>treptococcus mutans</i> . European Journal of Oral Sciences, 2015, 123, 221-227.	0.7	35
52	Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants. PLoS ONE, 2015, 10, e0118853.	1.1	41
53	Short communication: Protease activity measurement in milk as a diagnostic test for clinical mastitis in dairy cows. Journal of Dairy Science, 2015, 98, 4613-4618.	1.4	12
54	Colorimetric Assay for the Detection of Typical Biomarkers for Periodontitis Using a Magnetic Nanoparticle Biosensor. Analytical Chemistry, 2015, 87, 12161-12168.	3.2	50

#	Article	IF	CITATIONS
55	Sphingoid Bases Inhibit Acid-Induced Demineralization of Hydroxyapatite. Caries Research, 2015, 49, 9-17.	0.9	21
56	Importance of Endosomal Cathelicidin Degradation To Enhance DNA-Induced Chicken Macrophage Activation. Journal of Immunology, 2015, 195, 3970-3977.	0.4	42
57	<i>In vitro</i> phenotypic differentiation towards commensal and pathogenic oral biofilms. Biofouling, 2015, 31, 503-510.	0.8	37
58	Synthetic LPETG-Containing Peptide Incorporation in the Staphylococcus aureus Cell-Wall in a Sortase A- and Growth Phase-Dependent Manner. PLoS ONE, 2014, 9, e89260.	1.1	14
59	Tailor made plasmin substrates as potential diagnostic tool to test for mastitis. Veterinary Research Communications, 2014, 38, 271-277.	0.6	6
60	Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides. PLoS ONE, 2014, 9, e95939.	1.1	114
61	Identification and characterization of a salivary-pellicle-binding peptide by phage display. Archives of Oral Biology, 2014, 59, 448-454.	0.8	8
62	Bacillus globigii cell size is influenced by variants of the quorum sensing peptide extracellular death factor. Antonie Van Leeuwenhoek, 2014, 105, 221-228.	0.7	2
63	Bacterial proteases: targets for diagnostics and therapy. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1081-1087.	1.3	32
64	Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases. Analytical Biochemistry, 2013, 441, 38-43.	1.1	21
65	Identification of the hydroxyapatiteâ€binding domain of salivary agglutinin. European Journal of Oral Sciences, 2013, 121, 7-12.	0.7	15
66	Sortase A as a Tool to Functionalize Surfaces. Bioconjugate Chemistry, 2013, 24, 828-831.	1.8	15
67	Rapid detection and semi-quantification of IgG-accessible Staphylococcus aureus surface-associated antigens using a multiplex competitive Luminex assay. Journal of Immunological Methods, 2013, 397, 18-27.	0.6	15
68	Evaluation of a FRET-Peptide Substrate to Predict Virulence in Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e81428.	1.1	4
69	Highly Specific Protease-Based Approach for Detection of Porphyromonas gingivalis in Diagnosis of Periodontitis. Journal of Clinical Microbiology, 2012, 50, 104-112.	1.8	48
70	Comparing culture, realâ€ŧime PCR and fluorescence resonance energy transfer technology for detection of <i>Porphyromonas gingivalis</i> in patients with or without periâ€implant infections. Journal of Periodontal Research, 2012, 47, 616-625.	1.4	21
71	Peptide-Based Fluorescence Resonance Energy Transfer Protease Substrates for the Detection and Diagnosis of Bacillus Species. Analytical Chemistry, 2011, 83, 2511-2517.	3.2	41
72	A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms. International Journal of Antimicrobial Agents, 2011, 37, 476-479.	1.1	34

#	Article	IF	CITATIONS
73	Improved proteolytic stability of chicken cathelicidin-2 derived peptides by d-amino acid substitutions and cyclization. Peptides, 2011, 32, 875-880.	1.2	77
74	Avian cathelicidins: Paradigms for the development of anti-infectives. Veterinary Microbiology, 2011, 153, 27-36.	0.8	42
75	A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague. Folia Microbiologica, 2011, 56, 95-102.	1.1	3
76	Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents. International Journal of Antimicrobial Agents, 2010, 36, 271-274.	1.1	28
77	Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biological Chemistry, 2009, 390, 295-303.	1.2	64
78	DMBT1 functions as patternâ€recognition molecule for polyâ€sulfated and polyâ€phosphorylated ligands. European Journal of Immunology, 2009, 39, 833-842.	1.6	58
79	Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Molecular Immunology, 2009, 46, 2465-2473.	1.0	69
80	Diagnosis of Exposure to Chemical Warfare Agents: An Essential Tool to Counteract Chemical Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 195-201.	0.5	3
81	DMBT1 Confers Mucosal Protection In Vivo and a Deletion Variant Is Associated With Crohn's Disease. Gastroenterology, 2007, 133, 1499-1509.	0.6	96
82	Detection of Sulfur Mustard Adducts in Human Callus by Phage Antibodies. Chemical Biology and Drug Design, 2007, 69, 314-320.	1.5	9
83	Evaluation of the Antibacterial Spectrum of Drosocin Analogues. Chemical Biology and Drug Design, 2006, 68, 148-153.	1.5	40
84	A Peptide Domain of Bovine Milk Lactoferrin Inhibits the Interaction between Streptococcal Surface Protein Antigen and a Salivary Agglutinin Peptide Domain. Infection and Immunity, 2004, 72, 6181-6184.	1.0	29
85	Bacteria Binding by DMBT1/SAG/gp-340 Is Confined to the VEVLXXXXW Motif in Its Scavenger Receptor Cysteine-rich Domains. Journal of Biological Chemistry, 2004, 279, 47699-47703.	1.6	111
86	Salivary Agglutinin/DMBT1SAG Expression is Up-regulated in the Presence of Salivary Gland Tumors. Journal of Dental Research, 2004, 83, 567-571.	2.5	9
87	Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis. Genes Chromosomes and Cancer, 2004, 39, 185-194.	1.5	32
88	Binding of salivary agglutinin to IgA. Biochemical Journal, 2004, 383, 159-164.	1.7	36
89	Frequent downregulation of DMBT1 and galectin-3 in epithelial skin cancer. International Journal of Cancer, 2003, 105, 149-157.	2.3	45
90	Immunohistochemical Detection of Salivary Agglutinin/gp-340 in Human Parotid, Submandibular, and Labial Salivary Glands. Journal of Dental Research, 2002, 81, 134-139.	2.5	18

#	Article	IF	CITATIONS
91	Identification of the Bacteria-binding Peptide Domain on Salivary Agglutinin (gp-340/DMBT1), a Member of the Scavenger Receptor Cysteine-rich Superfamily. Journal of Biological Chemistry, 2002, 277, 32109-32115.	1.6	139
92	Sequential changes of the DMBT1 expression and location in normal lung tissue and lung carcinomas. Genes Chromosomes and Cancer, 2002, 35, 164-169.	1.5	53
93	The SRCR/SID region ofDMBT1defines a complex multi-allele system representing the major basis for its variability in cancer. Genes Chromosomes and Cancer, 2002, 35, 242-255.	1.5	39
94	Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340. Biochemical Journal, 2001, 359, 243.	1.7	53
95	Characterization of a catalase-peroxidase from the hyperthermophilic archaeon Archaeoglobus fulgidus. Extremophiles, 2001, 5, 323-332.	0.9	41
96	Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340. Biochemical Journal, 2001, 359, 243-248.	1.7	82