Bruce Stillman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6918764/publications.pdf Version: 2024-02-01

		11235	28425
111	23,131	73	109
papers	citations	h-index	g-index
137	137	137	15013
all docs	docs citations	times ranked	citing authors

RRUCE STULMAN

#	Article	IF	CITATIONS
1	The remarkable gymnastics of ORC. ELife, 2022, 11, .	2.8	10
2	The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. ELife, 2021, 10, .	2.8	14
3	Multiple, short protein binding motifs in ORC1 and CDC6 control the initiation of DNA replication. Molecular Cell, 2021, 81, 1951-1969.e6.	4.5	33
4	The structure of ORC–Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nature Communications, 2021, 12, 3883.	5.8	28
5	Evolution of DNA replication origin specification and gene silencing mechanisms. Nature Communications, 2020, 11, 5175.	5.8	16
6	Structural mechanism of helicase loading onto replication origin DNA by ORC-Cdc6. Proceedings of the United States of America, 2020, 117, 17747-17756.	3.3	41
7	The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. ELife, 2020, 9, .	2.8	20
8	Joseph F. Sambrook (1939–2019). Nature Structural and Molecular Biology, 2019, 26, 846-847.	3.6	0
9	A structural view of the initiators for chromosome replication. Current Opinion in Structural Biology, 2018, 53, 131-139.	2.6	13
10	Histone Modifications: Insights into Their Influence on Gene Expression. Cell, 2018, 175, 6-9.	13.5	159
11	The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592. Cell Cycle, 2018, 17, 1102-1114.	1.3	27
12	Structural basis of Mcm2–7 replicative helicase loading by ORC–Cdc6 and Cdt1. Nature Structural and Molecular Biology, 2017, 24, 316-324.	3.6	130
13	Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9529-E9538.	3.3	76
14	Structure of the active form of human origin recognition complex and its ATPase motor module. ELife, 2017, 6, .	2.8	44
15	Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model. PLoS ONE, 2016, 11, e0151832.	1.1	64
16	Structure and Function Studies of Replication Initiation Factors. , 2016, , 427-441.		0
17	Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression. Genome Research, 2016, 26, 315-330.	2.4	29
18	Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. ELife, 2016, 5, .	2.8	24

2

#	Article	IF	CITATIONS
19	Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. Journal of Biological Chemistry, 2015, 290, 12355-12369.	1.6	41
20	Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes. Molecular Cell, 2015, 59, 139-141.	4.5	50
21	Structural and mechanistic insights into Mcm2–7 double-hexamer assembly and function. Genes and Development, 2014, 28, 2291-2303.	2.7	96
22	Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1899-908.	3.3	55
23	Acquired Dependence of Acute Myeloid Leukemia on the DEAD-Box RNA Helicase DDX5. Cell Reports, 2014, 7, 1887-1899.	2.9	31
24	Cryo-EM structure of a helicase loading intermediate containing ORC–Cdc6–Cdt1–MCM2-7 bound to DNA. Nature Structural and Molecular Biology, 2013, 20, 944-951.	3.6	122
25	Immunoblotting Histones from Yeast Whole-Cell Protein Extracts. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot067116.	0.2	8
26	Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010108-a010108.	2.3	262
27	Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14120-14121.	3.3	29
28	The Origin Recognition Complex: A Biochemical and Structural View. Sub-Cellular Biochemistry, 2012, 62, 37-58.	1.0	42
29	Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes and Development, 2012, 26, 1797-1810.	2.7	61
30	DDX5 Regulates DNA Replication and Is Required for Cell Proliferation in a Subset of Breast Cancer Cells. Cancer Discovery, 2012, 2, 812-825.	7.7	102
31	Cdc6-Induced Conformational Changes in ORC Bound to Origin DNA Revealed by Cryo-Electron Microscopy. Structure, 2012, 20, 534-544.	1.6	60
32	A Common Telomeric Gene Silencing Assay Is Affected by Nucleotide Metabolism. Molecular Cell, 2011, 42, 127-136.	4.5	63
33	An Analysis of CAF-1-interacting Proteins Reveals Dynamic and Direct Interactions with the KU Complex and 14-3-3 Proteins. Journal of Biological Chemistry, 2011, 286, 10876-10887.	1.6	29
34	Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7113-7118.	3.3	49
35	Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs. Science Signaling, 2010, 3, ra12.	1.6	341
36	The Dbf4–Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature, 2010, 463, 113-117.	13.7	288

#	Article	IF	CITATIONS
37	Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15093-15098.	3.3	129
38	Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes and Development, 2010, 24, 1133-1144.	2.7	146
39	A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20240-20245.	3.3	465
40	The Elongator Complex Interacts with PCNA and Modulates Transcriptional Silencing and Sensitivity to DNA Damage Agents. PLoS Genetics, 2009, 5, e1000684.	1.5	95
41	Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nature Biotechnology, 2009, 27, 643-651.	9.4	241
42	Orc1 Controls Centriole and Centrosome Copy Number in Human Cells. Science, 2009, 323, 789-793.	6.0	133
43	DNA Polymerases at the Replication Fork inÂEukaryotes. Molecular Cell, 2008, 30, 259-260.	4.5	63
44	The architecture of the DNA replication origin recognition complex in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10326-10331.	3.3	70
45	Cdc6 ATPase Activity Regulates ORC·Cdc6 Stability and the Selection of Specific DNA Sequences as Origins of DNA Replication. Journal of Biological Chemistry, 2007, 282, 11705-11714.	1.6	84
46	Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1183-1188.	3.3	118
47	ATP-dependent Assembly of the Human Origin Recognition Complex. Journal of Biological Chemistry, 2007, 282, 32370-32383.	1.6	77
48	Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell, 2007, 11, 431-445.	7.7	255
49	Cdc7-Dbf4 Phosphorylates MCM Proteins via a Docking Site-Mediated Mechanism to Promote S Phase Progression. Molecular Cell, 2006, 24, 101-113.	4.5	302
50	ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nature Structural and Molecular Biology, 2005, 12, 965-971.	3.6	198
51	Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8519-8524.	3.3	36
52	Origin recognition and the chromosome cycle. FEBS Letters, 2005, 579, 877-884.	1.3	124
53	Dynamics of pre-replication complex proteins during the cell division cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 7-16.	1.8	76
54	Deregulation of cyclin E in human cells interferes with prereplication complex assembly. Journal of Cell Biology, 2004, 165, 789-800.	2.3	270

#	Article	IF	CITATIONS
55	The Knockout Mouse Project. Nature Genetics, 2004, 36, 921-924.	9.4	556
56	Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO Journal, 2004, 23, 2651-2663.	3.5	235
57	Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. BioEssays, 2003, 25, 1158-1167.	1.2	179
58	Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12183-12188.	3.3	229
59	Biochemical Characterization of DNA Damage Checkpoint Complexes: Clamp Loader and Clamp Complexes with Specificity for $5\hat{a} \in 2$ Recessed DNA. PLoS Biology, 2003, 1, e33.	2.6	315
60	Orc6 Involved in DNA Replication, Chromosome Segregation, and Cytokinesis. Science, 2002, 297, 1026-1031.	6.0	197
61	Yph1p, an ORC-Interacting Protein. Cell, 2002, 109, 835-848.	13.5	172
62	Human Origin Recognition Complex Large Subunit Is Degraded by Ubiquitin-Mediated Proteolysis after Initiation of DNA Replication. Molecular Cell, 2002, 9, 481-491.	4.5	305
63	FASCIATA Genes for Chromatin Assembly Factor-1 in Arabidopsis Maintain the Cellular Organization of Apical Meristems. Cell, 2001, 104, 131-142.	13.5	446
64	Opening of the Clamp. Cell, 2001, 106, 655-660.	13.5	82
65	Binding of cyclin-dependent kinases to ORC and Cdc6p regulates the chromosome replication cycle. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11211-11217.	3.3	73
66	PCNA connects DNA replication to epigenetic inheritance in yeast. Nature, 2000, 408, 221-225.	13.7	273
67	Assembly of a Complex Containing Cdc45p, Replication Protein A, and Mcm2p at Replication Origins Controlled by S-Phase Cyclin-Dependent Kinases and Cdc7p-Dbf4p Kinase. Molecular and Cellular Biology, 2000, 20, 3086-3096.	1.1	301
68	A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1530-1535.	3.3	293
69	The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7766-7771.	3.3	73
70	Chromatin Association of Human Origin Recognition Complex, Cdc6, and Minichromosome Maintenance Proteins during the Cell Cycle: Assembly of Prereplication Complexes in Late Mitosis. Molecular and Cellular Biology, 2000, 20, 8602-8612.	1.1	854
71	Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes and Development, 2000, 14, 1631-41.	2.7	47
72	Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes and Development, 2000, 14, 1631-1641.	2.7	108

#	Article	IF	CITATIONS
73	The Cdc6p nucleotide-binding motif is required for loading Mcm proteins onto chromatin. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 441-446.	3.3	175
74	Histone Acetyltransferase HBO1 Interacts with the ORC1 Subunit of the Human Initiator Protein. Journal of Biological Chemistry, 1999, 274, 23027-23034.	1.6	279
75	Heterochromatin Dynamics in Mouse Cells. Molecular Cell, 1999, 4, 529-540.	4.5	280
76	Replication-Dependent Marking of DNA by PCNA Facilitates CAF-1-Coupled Inheritance of Chromatin. Cell, 1999, 96, 575-585.	13.5	610
77	Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO Journal, 1999, 18, 5334-5346.	3.5	238
78	Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Current Biology, 1998, 8, 96-108.	1.8	316
79	THE DNA REPLICATION FORK IN EUKARYOTIC CELLS. Annual Review of Biochemistry, 1998, 67, 721-751.	5.0	772
80	Formation of a Preinitiation Complex by S-phase Cyclin CDK-Dependent Loading of Cdc45p onto Chromatin. Science, 1998, 280, 593-596.	6.0	312
81	Reconstitution of Recombinant Human Replication Factor C (RFC) and Identification of an RFC Subcomplex Possessing DNA-dependent ATPase Activity. Journal of Biological Chemistry, 1998, 273, 5979-5987.	1.6	75
82	The Orc4p and Orc5p Subunits of the Xenopus and Human Origin Recognition Complex Are Related to Orc1p and Cdc6p. Journal of Biological Chemistry, 1998, 273, 32421-32429.	1.6	87
83	Cyclin-Dependent Kinase Inhibitor p21 Modulates the DNA Primer-Template Recognition Complex. Molecular and Cellular Biology, 1998, 18, 4177-4187.	1.1	78
84	Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3603-3608.	3.3	237
85	Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in <i>cdc6</i> mutants. Genes and Development, 1997, 11, 3375-3386.	2.7	340
86	Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I Genes and Development, 1997, 11, 345-357.	2.7	358
87	<i>CDC45</i> , a Novel Yeast Gene That Functions with the Origin Recognition Complex and Mcm Proteins in Initiation of DNA Replication. Molecular and Cellular Biology, 1997, 17, 553-563.	1.1	157
88	A human protein related to yeast Cdc6p. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 142-147.	3.3	145
89	Nucleosome Assembly by a Complex of CAF-1 and Acetylated Histones H3/H4. Cell, 1996, 87, 95-104.	13.5	575
90	Cell Cycle Control of DNA Replication. Science, 1996, 274, 1659-1663.	6.0	515

#	Article	IF	CITATIONS
91	The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2224-2228.	3.3	197
92	Characterization of the Five Replication Factor C Genes of <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1995, 15, 4661-4671.	1.1	267
93	The origin recognition complex in silencing, cell cycle progression, and DNA replication Molecular Biology of the Cell, 1995, 6, 741-756.	0.9	204
94	The multidomain structure of Orc1 p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell, 1995, 83, 563-568.	13.5	244
95	ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell, 1995, 81, 667-676.	13.5	355
96	Conserved Initiator Proteins in Eukaryotes. Science, 1995, 270, 1667-1671.	6.0	246
97	The p150 and p60 subunits of chromatin assemblyfactor I: A molecular link between newly synthesized histories and DNA replication. Cell, 1995, 81, 1105-1114.	13.5	361
98	Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature, 1994, 369, 207-212.	13.7	569
99	Yeast origin recognition complex functions in transcription silencing and DNA replication. Science, 1993, 262, 1844-1849.	6.0	431
100	A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science, 1992, 255, 817-823.	6.0	619
101	ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature, 1992, 357, 128-134.	13.7	1,228
102	Stepwise assembly of chromatin during DNA replication in vitro EMBO Journal, 1991, 10, 971-980.	3.5	268
103	Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. Journal of Biological Chemistry, 1991, 266, 1950-1960.	1.6	353
104	Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. Journal of Biological Chemistry, 1991, 266, 1950-60.	1.6	315
105	Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4 Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1023-1027.	3.3	263
106	Transcriptional silencing and lamins. Nature, 1989, 342, 24-24.	13.7	65
107	Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell, 1989, 58, 15-25.	13.5	652
108	Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro Molecular and Cellular Biology, 1989, 9, 609-619.	1.1	244

#	Article	IF	CITATIONS
109	Purification of a Cellular Replication Factor, RF-C, That Is Required for Coordinated Synthesis of Leading and Lagging Strands during Simian Virus 40 DNA Replication In Vitro. Molecular and Cellular Biology, 1989, 9, 609-619.	1.1	118
110	Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2120-2124.	3.3	238
111	Chromatin assembly during SV40 DNA replication in vitro. Cell, 1986, 45, 555-565.	13.5	255