
Robert E Strecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6918747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Molecular Psychiatry, 2021, 26, 3461-3475.	7.9	26
2	The Dual Orexin Receptor Antagonist DORA-22 Improves Mild Stress-induced Sleep Disruption During the Natural Sleep Phase of Nocturnal Rats. Neuroscience, 2021, 463, 30-44.	2.3	3
3	The dual orexinergic receptor antagonist DORA-22 improves the sleep disruption and memory impairment produced by a rodent insomnia model. Sleep, 2020, 43, .	1.1	11
4	Alterations in sleep, sleep spindle, and EEG power in mGluR5 knockout mice. Journal of Neurophysiology, 2020, 123, 22-33.	1.8	28
5	Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Current Biology, 2020, 30, 2379-2385.e4.	3.9	35
6	Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits. Translational Psychiatry, 2020, 10, 29.	4.8	25
7	Differential modulation of NREM sleep regulation and EEG topography by chronic sleep restriction in mice. Scientific Reports, 2020, 10, 18.	3.3	21
8	Somatostatin+/nNOS+ neurons are involved in delta electroencephalogram activity and cortical-dependent recognition memory. Sleep, 2019, 42, .	1.1	17
9	0093 Orexin Receptor Antagonism Improves Stress-related Insomnia, "Next Day―Hypersomnia, And Sleep Dependent Memory Consolidation In The Rat. Sleep, 2019, 42, A38-A38.	1.1	0
10	Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Scientific Reports, 2019, 9, 3607.	3.3	46
11	Validation of an automated sleep spindle detection method for mouse electroencephalography. Sleep, 2019, 42, .	1.1	40
12	A rodent cage change insomnia model disrupts memory consolidation. Journal of Sleep Research, 2019, 28, e12792.	3.2	13
13	Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation. Behavioural Brain Research, 2018, 339, 124-129.	2.2	44
14	The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain, Behavior, and Immunity, 2017, 62, 137-150.	4.1	50
15	Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1727-E1736.	7.1	27
16	Chronic sleep restriction induces longâ€lasting changes in adenosine and noradrenaline receptor density in the rat brain. Journal of Sleep Research, 2015, 24, 549-558.	3.2	30
17	Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3535-3540.	7.1	246
18	Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neuroscience Letters, 2014, 580, 27-31.	2.1	100

ROBERT E STRECKER

#	Article	IF	CITATIONS
19	Sleep allostasis in chronic sleep restriction: The role of the norepinephrine system. Brain Research, 2013, 1531, 9-16.	2.2	32
20	Chronic sleep restriction impairs spatial memory in rats. NeuroReport, 2013, 24, 91-95.	1.2	23
21	Neurochemistry of wakefulness and sleep. , 2012, , 23-42.		2
22	Decoupling of Sleepiness from Sleep Time and Intensity during Chronic Sleep Restriction: Evidence for a Role of the Adenosine System. Sleep, 2012, 35, 861-869.	1.1	45
23	Control of Sleep and Wakefulness. Physiological Reviews, 2012, 92, 1087-1187.	28.8	1,089
24	Chronic ramelteon treatment in a mouse model of Alzheimer's disease. Archives Italiennes De Biologie, 2012, 150, 5-14.	0.4	15
25	The cognitive cost of sleep lost. Neurobiology of Learning and Memory, 2011, 96, 564-582.	1.9	217
26	Sleep fragmentation reduces hippocampal CA1 pyramidal cell excitability and response to adenosine. Neuroscience Letters, 2010, 469, 1-5.	2.1	35
27	One week of exposure to intermittent hypoxia impairs attentional set-shifting in rats. Behavioural Brain Research, 2010, 210, 123-126.	2.2	25
28	Twenty-four hours, or five days, of continuous sleep deprivation or experimental sleep fragmentation do not alter thirst or motivation for water reward in rats. Behavioural Brain Research, 2010, 214, 180-186.	2.2	8
29	Experimental sleep fragmentation impairs spatial reference but not working memory in Fischer/Brown Norway rats. Journal of Sleep Research, 2009, 18, 238-244.	3.2	29
30	Experimental sleep fragmentation and sleep deprivation in rats increases exploration in an open field test of anxiety while increasing plasma corticosterone levels. Behavioural Brain Research, 2009, 197, 450-453.	2.2	90
31	Spatial learning and memory deficits following exposure to 24Âh of sleep fragmentation or intermittent hypoxia in a rat model of obstructive sleep apnea. Brain Research, 2009, 1294, 128-137.	2.2	62
32	Sleep fragmentation impairs ventilatory longâ€ŧerm facilitation via adenosine A1 receptors. Journal of Physiology, 2008, 586, 5215-5229.	2.9	19
33	Assessing sleepiness in the rat: a multiple sleep latencies test compared to polysomnographic measures of sleepiness. Journal of Sleep Research, 2008, 17, 365-375.	3.2	23
34	24 hours of sleep deprivation in the rat increases sleepiness and decreases vigilance: introduction of the ratâ€psychomotor vigilance task. Journal of Sleep Research, 2008, 17, 376-384.	3.2	54
35	Microdialysis elevation of adenosine in the basal forebrain produces vigilance impairments in the rat psychomotor vigilance task. Sleep, 2008, 31, 1393-8.	1.1	33
36	Experimental Sleep Fragmentation Impairs Attentional Set-Shifting in Rats. Sleep, 2007, 30, 52-60.	1.1	70

ROBERT E STRECKER

#	Article	IF	CITATIONS
37	Another Chapter in the Adenosine Story. Sleep, 2006, 29, 426-428.	1.1	31
38	Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience, 2006, 23, 2739-2748.	2.6	185
39	Sleep deprivation in rats produces attentional impairments on a 5-choice serial reaction time task. Sleep, 2006, 29, 69-76.	1.1	46
40	Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proceedings of the United States of America, 2004, 101, 17545-17548.	7.1	231
41	Wakefulness-inducing effects of histamine in the basal forebrain of freely moving rats. Behavioural Brain Research, 2004, 152, 271-278.	2.2	48
42	Adenosine and sleep–wake regulation. Progress in Neurobiology, 2004, 73, 379-396.	5.7	515
43	Phasic but not tonic REM-selective discharge of periaqueductal gray neurons in freely behaving animals: relevance to postulates of GABAergic inhibition of monoaminergic neurons. Brain Research, 2002, 945, 276-280.	2.2	27
44	In vivo neurochemical monitoring by microdialysis and capillary separations. Current Opinion in Chemical Biology, 2002, 6, 659-665.	6.1	114
45	Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behavioural Brain Research, 2000, 115, 183-204.	2.2	335
46	Adenosine as a Biological Signal Mediating Sleepiness following Prolonged Wakefulness. NeuroSignals, 2000, 9, 319-327.	0.9	74
47	A comparison of the effects of amphetamine and low doses of apomorphine on operant force production, interresponse times and response duration in rat. Psychopharmacology, 1999, 145, 351-359.	3.1	1
48	Dopamine Depletion in Nucleus Accumbens Influences Locomotion But Not Force and Timing of Operant Responding. Pharmacology Biochemistry and Behavior, 1998, 59, 737-745.	2.9	12
49	Behavioral State Control through Differential Serotonergic Inhibition in the Mesopontine Cholinergic Nuclei: A Simultaneous Unit Recording and Microdialysis Study. Journal of Neuroscience, 1998, 18, 5490-5497.	3.6	191
50	Adenosine: A Mediator of the Sleep-Inducing Effects of Prolonged Wakefulness. Science, 1997, 276, 1265-1268.	12.6	1,120
51	Low doses of apomorphine suppress operant motor performance in rats. Pharmacology Biochemistry and Behavior, 1996, 53, 335-340.	2.9	7
52	Effect of acute and chronic fluoxetine on extracellular dopamine levels in the caudate-putamen and nucleus accumbens of rat. , 1996, 23, 125-131.		60
53	The characterization of the effect of locally applied N-methylquipazine, a 5-HT3 receptor agonist, on extracellular dopamine levels in the anterior medial prefrontal cortex in the rat: An in vivo microdialysis study. , 1996, 24, 313-321.		12
54	Electrical stimulation of the kindled hippocampus briefly increases extracellular dopamine in the nucleus accumbens. Neuroscience Letters, 1994, 176, 173-177.	2.1	29

ROBERT E STRECKER

#	Article	IF	CITATIONS
55	Extracellular dopamine and its metabolites in the nucleus accumbens of fischer and lewis rats: Basal levels and cocaine-induced changes. Life Sciences, 1994, 56, PL135-PL141.	4.3	23
56	Midbrain 6-hydroxydopamine lesions modulate blink reflex excitability. Experimental Brain Research, 1993, 94, 88-96.	1.5	70
57	The 5-HT3 antagonist zacopride attenuates cocaine-induced increases in extracellular dopamine in rat nucleus accumbens. Pharmacology Biochemistry and Behavior, 1993, 45, 759-763.	2.9	52
58	Genetically Modified Primary Astrocytes as Cellular Vehicles for Gene Therapy in the Brain. Cell Transplantation, 1993, 2, 207-214.	2.5	119
59	Preparation and Intracerebral Grafting of Dissociated Fetal Brain Tissue in Rats. Methods in Neurosciences, 1991, 7, 305-326.	0.5	24
60	Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA. Brain Research, 1989, 492, 187-202.	2.2	124
61	Endogenous Release of Neuronal Serotonin and 5-Hydroxyindoleacetic Acid in the Caudate-Putamen of the Rat as Revealed by Intracerebral Dialysis Coupled to High-Performance Liquid Chromatography with Fluorimetric Detection. Journal of Neurochemistry, 1988, 51, 1422-1435.	3.9	237
62	Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends in Neurosciences, 1987, 10, 509-516.	8.6	328
63	Single unit response of noradrenergic, serotonergic and dopaminergic neurons in freely moving cats to simple sensory stimuli. Brain Research, 1986, 369, 336-340.	2.2	66
64	Caudate unit activity in freely moving cats: effects of phasic auditory and visual stimuli. Brain Research, 1985, 329, 350-353.	2.2	30
65	Substantia nigra dopaminergic unit activity in behaving cats: Effect of arousal on spontaneous discharge and sensory evoked activity. Brain Research, 1985, 361, 339-350.	2.2	107
66	Raphe unit activity in freely moving cats is altered by manipulations of central but not peripheral motor systems. Brain Research, 1983, 279, 77-84.	2.2	89
67	Dopaminergic unit activity in freely moving cats: Lack of relationship to feeding, satiety, and glucose injections. Brain Research, 1983, 260, 317-321.	2.2	23
68	Response of dopaminergic neurons in cat to auditory stimuli presented across the sleep-waking cycle. Brain Research, 1983, 277, 150-154.	2.2	59
69	Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Research, 1983, 258, 217-228.	2.2	335