Christofer Leygraf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6918653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial atmospheric corrosion studies of copper from macroscale to nanoscale in a simulated indoor atmospheric environment. Corrosion Science, 2022, 195, 109995.	3.0	6
2	The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates. Journal of Colloid and Interface Science, 2021, 581, 816-825.	5.0	10
3	A novel methodology to study antimicrobial properties of high-touch surfaces used for indoor hygiene applications—A study on Cu metal. PLoS ONE, 2021, 16, e0247081.	1.1	17
4	The interplay between atmospheric corrosion and antimicrobial efficiency of Cu and Cu5Zn5Al1Sn during simulated high-touch conditions. Corrosion Science, 2021, 185, 109433.	3.0	13
5	Density Functional Theory Study of Influence of Oxide Thickness and Surface Alloying on Cl Migration within α-Al ₂ O ₃ . Journal of the Electrochemical Society, 2021, 168, 081508.	1.3	10
6	Corrosion inhibition of copper with octadecylphosphonic acid (ODPA) in a simulated indoor atmospheric environment. Corrosion Science, 2021, 192, 109777.	3.0	11
7	High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 49402-49413.	4.0	22
8	Real-Time Corrosion Monitoring of Aluminum Alloy Using Scanning Kelvin Probe Force Microscopy. Journal of the Electrochemical Society, 2020, 167, 081502.	1.3	23
9	A mechanistic study of stratified patina evolution on Sn-bronze in chloride-rich atmospheres. Corrosion Science, 2020, 166, 108477.	3.0	28
10	Numerical simulation of micro-galvanic corrosion of Al alloys: Effect of density of Al(OH)3 precipitate. Electrochimica Acta, 2019, 324, 134847.	2.6	17
11	Understanding the Barrier Layer Formed via Adding BTAH in Copper Film Electrodeposition. Journal of the Electrochemical Society, 2019, 166, D10-D20.	1.3	9
12	The origin and evolution of copper patina colour. Corrosion Science, 2019, 157, 337-346.	3.0	38
13	A DFT-Study of Cl Ingress into α-Al ₂ O ₃ (0001) and Al(111) and Its Possible Influence on Localized Corrosion of Al. Journal of the Electrochemical Society, 2019, 166, C3124-C3130.	1.3	25
14	On the Volta potential measured by SKPFM – fundamental and practical aspects with relevance to corrosion science. Corrosion Engineering Science and Technology, 2019, 54, 185-198.	0.7	73
15	Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements. Npj Materials Degradation, 2019, 3, .	2.6	28
16	Co-Adsorption of H2O, OH, and Cl on Aluminum and Intermetallic Surfaces and Its Effects on the Work Function Studied by DFT Calculations. Molecules, 2019, 24, 4284.	1.7	11
17	The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture. Corrosion Science, 2019, 149, 54-67.	3.0	41
18	Volta Potential EvolutionÂof Intermetallics in Aluminum Alloy MicrostructureÂUnder Thin Aqueous Adlayers: A combined DET and Experimental Study, Topics in Catalysis, 2018, 61, 1169-1182	1.3	26

#	Article	IF	CITATIONS
19	The golden alloy Cu5Zn5Al1Sn: Patina evolution in chloride-containing atmospheres. Corrosion Science, 2018, 133, 190-203.	3.0	27
20	Comments on the paper "Copper in ultrapure water, a scientific issue under debate―by M. Ottosson, M. Boman, P. Berastegui, Y. Andersson, M. Hahlin, M. Korvela, and R. Berger. Corrosion Science, 2018, 142, 305-307.	3.0	2
21	Combining lithography and capillary techniques for local electrochemical property measurements. Electrochemistry Communications, 2018, 87, 53-57.	2.3	16
22	Atmospheric corrosion of Zn–Al coatings in a simulated automotive environment. Surface Engineering, 2018, 34, 641-648.	1.1	12
23	The golden alloy Cu-5Zn-5Al-1Sn: A multi-analytical surface characterization. Corrosion Science, 2018, 131, 94-103.	3.0	19
24	Experimental and Simulation Investigations of Copper Reduction Mechanism with and without Addition of SPS. Journal of the Electrochemical Society, 2018, 165, D604-D611.	1.3	3
25	Numerical Simulation of Micro-Galvanic Corrosion in Al Alloys: Effect of Geometric Factors. Journal of the Electrochemical Society, 2017, 164, C75-C84.	1.3	48
26	Radiation Induced Corrosion of Copper in Humid Air and Argon Atmospheres. Journal of the Electrochemical Society, 2017, 164, C201-C206.	1.3	17
27	A Critical Review on Corrosion and Runoff from Zinc and Zinc-Based Alloys in Atmospheric Environments. Corrosion, 2017, 73, 1060-1077.	0.5	47
28	Effect of Stainless Steel Composition on Atmospheric Corrosion Resistance at a Marine Site in Dubai. Corrosion, 2017, 73, 880-891.	0.5	6
29	Characterisation of a centuries-old patinated copper roof tile from Queen Anne's Summer Palace in Prague. Materials Characterization, 2017, 133, 146-155.	1.9	15
30	Computational analysis of the early stage of cuprous oxide sulphidation: a top-down process. Corrosion Engineering Science and Technology, 2017, 52, 50-53.	0.7	13
31	First-Principle Calculation of Volta Potential of Intermetallic Particles in Aluminum Alloys and Practical Implications. Journal of the Electrochemical Society, 2017, 164, C465-C473.	1.3	61
32	Hexane selenol dissociation on Cu: The protective role of oxide and water. Applied Surface Science, 2017, 423, 716-720.	3.1	4
33	Numerical Simulation of Micro-Galvanic Corrosion in Al Alloys: Steric Hindrance Effect of Corrosion Product. Journal of the Electrochemical Society, 2017, 164, C1035-C1043.	1.3	21
34	Numerical Simulation of Micro-Galvanic Corrosion of Al Alloys: Effect of Chemical Factors. Journal of the Electrochemical Society, 2017, 164, C768-C778.	1.3	24
35	Analysis of Historic Copper Patinas. Influence of Inclusions on Patina Uniformity. Materials, 2017, 10, 298.	1.3	15
36	Role of the Oxide Layer in Radiation-Induced Corrosion of Copper in Anoxic Water. Journal of Physical Chemistry C, 2016, 120, 11450-11455.	1.5	22

#	Article	IF	CITATIONS
37	Reactivity at the Cu ₂ O(100):Cu–H ₂ O interface: a combined DFT and PES study. Physical Chemistry Chemical Physics, 2016, 18, 30570-30584.	1.3	21
38	Atmospheric Corrosion Resistance of Stainless Steel: Results of a Field Exposure Program in the Middle-East. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2016, 161, 33-43.	0.4	3
39	Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochimica Acta, 2016, 211, 245-254.	2.6	42
40	Atmospheric corrosion of Cu, Zn, and Cu–Zn alloys protected by self-assembled monolayers of alkanethiols. Surface Science, 2016, 648, 170-176.	0.8	28
41	A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products. Electrochimica Acta, 2016, 192, 310-318.	2.6	76
42	The Surface Structure of Cu ₂ O(100). Journal of Physical Chemistry C, 2016, 120, 4373-4381.	1.5	46
43	The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere. Corrosion Science, 2016, 103, 20-29.	3.0	32
44	Corrosion Inhibition of Two Brass Alloys by Octadecanethiol in Humidified Air with Formic Acid. Corrosion, 2015, 71, 908-917.	0.5	6
45	Density-functional theory investigation of Al pitting corrosion in electrolyte containing chloride ions. Applied Surface Science, 2015, 357, 2028-2038.	3.1	47
46	Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corrosion Science, 2014, 85, 15-25.	3.0	109
47	Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate. Science of the Total Environment, 2014, 472, 681-694.	3.9	56
48	Octadecanethiol as Corrosion Inhibitor for Zinc and Patterned Zinc-Copper in Humidified Air with Formic Acid. Journal of the Electrochemical Society, 2014, 161, C330-C338.	1.3	16
49	An insight into the influence of morphological and compositional heterogeneity of an individual intermetallic particle on aluminium alloy corrosion initiation. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 195-198.	0.8	20
50	Combined in Situ Quartz Crystal Microbalance with Dissipation Monitoring, Indirect Nanoplasmonic Sensing, and Vibrational Sum Frequency Spectroscopic Monitoring of Alkanethiol-Protected Copper Corrosion. Langmuir, 2013, 29, 7151-7161.	1.6	21
51	Alkanethiols as Inhibitors for the Atmospheric Corrosion of Copper Induced by Formic Acid: Effect of Chain Length. Journal of the Electrochemical Society, 2013, 160, C270-C276.	1.3	32
52	Study of corrosion behavior of a 22% Cr duplex stainless steel: Influence of nano-sized chromium nitrides and exposure temperature. Electrochimica Acta, 2013, 113, 280-289.	2.6	50
53	Selected area visualization by FIB-milling for corrosion-microstructure analysis with submicron resolution. Materials Letters, 2013, 98, 230-233.	1.3	2
54	Micro-Galvanic Corrosion Effects on Patterned Copper-Zinc Samples during Exposure in Humidified Air Containing Formic Acid. Journal of the Electrochemical Society, 2013, 160, C423-C431.	1.3	23

#	Article	IF	CITATIONS
55	Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments. Corrosion Science, 2013, 73, 62-71.	3.0	89
56	Nanoplasmonic Sensing for Monitoring the Initial Stages of Atmospheric Corrosion of Cu Nanodisks and Thin Films. Journal of the Electrochemical Society, 2013, 160, C487-C492.	1.3	9
57	Radial Spreading of Localized Corrosion-Induced Selective Leaching on α-Brass in Dilute NaCl Solution. Corrosion, 2013, 69, 468-476.	0.5	7
58	Radiation Induced Corrosion of Copper in Anoxic Aqueous Solution. Electrochemical and Solid-State Letters, 2012, 15, C5.	2.2	13
59	GILDES Model Simulations of the Atmospheric Corrosion of Zinc Induced by Low Concentrations of Carboxylic Acids. Journal of the Electrochemical Society, 2012, 159, C123-C128.	1.3	9
60	Influence of Grain Boundaries on Dissolution Behavior of a Biomedical CoCrMo Alloy: In-Situ Electrochemical-Optical, AFM and SEM/TEM Studies. Journal of the Electrochemical Society, 2012, 159, C422-C427.	1.3	39
61	Integration of Quartz Crystal Microbalance with Vibrational Sum Frequency Spectroscopy–Quantification of the Initial Oxidation of Alkanethiol-Covered Copper. Journal of Physical Chemistry C, 2012, 116, 24549-24557.	1.5	19
62	The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media. Applied Surface Science, 2012, 258, 4351-4359.	3.1	35
63	Bioorganic compounds as copper corrosion inhibitors in hydrocarbon media. Corrosion Science, 2012, 58, 104-114.	3.0	42
64	Evolution of corrosion products and metal release from Galvalume coatings on steel during short and long-term atmospheric exposures. Materials Chemistry and Physics, 2012, 133, 419-428.	2.0	35
65	Initial Oxidation of Alkanethiol-Covered Copper Studied by Vibrational Sum Frequency Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 23871-23879.	1.5	41
66	Initial oxidation of brass induced by humidified air. Applied Surface Science, 2011, 258, 1235-1241.	3.1	46
67	Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochimica Acta, 2011, 56, 9413-9419.	2.6	112
68	Minuscule device for hydrogen generation/electrical energy collection system on aluminum alloy surface. International Journal of Hydrogen Energy, 2011, 36, 2855-2859.	3.8	7
69	GILDES Model Simulations of the Atmospheric Corrosion of Copper Induced by Low Concentrations of Carboxylic Acids. Journal of the Electrochemical Society, 2011, 158, C429.	1.3	6
70	Multi-Analysis of Initial Atmospheric Corrosion of Brass Induced by Carboxylic Acids. Journal of the Electrochemical Society, 2011, 158, C172.	1.3	15
71	Molecular Structural Information of the Atmospheric Corrosion of Zinc Studied by Vibrational Spectroscopy Techniques. Journal of the Electrochemical Society, 2010, 157, C357.	1.3	11
72	Evidence for the Molecular Basis of Corrosion of Zinc Induced by Formic Acid using Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1679-1682.	2.1	14

#	Article	IF	CITATIONS
73	The Initial Stages of Atmospheric Corrosion of Iron in a Saline Environment Studied with Time-Resolved In Situ X-Ray Transmission Microscopy. Journal of the Electrochemical Society, 2010, 157, C110.	1.3	10
74	Molecular Structural Information of the Atmospheric Corrosion of Zinc Studied by Vibrational Spectroscopy Techniques. Journal of the Electrochemical Society, 2010, 157, C363.	1.3	16
75	Initial Atmospheric Corrosion of Zinc Induced by Carboxylic Acids: A Quantitative In Situ Study. Journal of the Electrochemical Society, 2009, 156, C441.	1.3	22
76	Multi-analytical investigation of stainless steel grade AISI 420 in simulated food contact. Journal of Food Engineering, 2009, 93, 23-31.	2.7	22
77	Surface Characteristics, Copper Release, and Toxicity of Nano―and Micrometerâ€Sized Copper and Copper(II) Oxide Particles: A Crossâ€Disciplinary Study. Small, 2009, 5, 389-399.	5.2	353
78	Initial Atmospheric Corrosion of Zinc Exposed to Formic Acid, Investigated by in Situ Vibrational Sum Frequency Spectroscopy and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2009, 113, 2088-2095.	1.5	22
79	Initial Atmospheric Corrosion of Zn: Influence of Humidity on the Adsorption of Formic Acid Studied by Vibrational Sum Frequency Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 6169-6173.	1.5	13
80	Vibrational Sum Frequency Spectroscopy Study of the Liquid/Vapor Interface of Formic Acid/Water Solutions. Journal of Physical Chemistry C, 2009, 113, 13209-13218.	1.5	31
81	New fundamental and environmental aspects of atmospheric corrosion. Revista De Metalurgia, 2009, 45, 223-227.	0.1	3
82	Corrosion-induced release of Cu and Zn into rainwater from brass, bronze and their pure metals. A 2-year field study. Environmental Monitoring and Assessment, 2008, 144, 455-461.	1.3	23
83	The interaction between concrete pavement and corrosion-induced copper runoff from buildings. Environmental Monitoring and Assessment, 2008, 140, 175-189.	1.3	14
84	Corrosion-induced release of chromium and iron from ferritic stainless steel grade AISI 430 in simulated food contact. Journal of Food Engineering, 2008, 87, 291-300.	2.7	55
85	Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel. Electrochimica Acta, 2008, 53, 4239-4247.	2.6	75
86	Developing an AFM-Based SECM System; Instrumental Setup, SECM Simulation, Characterization, and Calibration. Journal of the Electrochemical Society, 2008, 155, C474.	1.3	26
87	Multianalytical and In Situ Studies of Localized Corrosion of EN AW-3003 Alloy—Influence of Intermetallic Particles. Journal of the Electrochemical Society, 2008, 155, C138.	1.3	37
88	Initial NaCl-particle induced atmospheric corrosion of zinc—Effect of CO2 and SO2. Corrosion Science, 2008, 50, 111-123.	3.0	79
89	Atmospheric corrosion of field-exposed magnesium alloy AZ91D. Corrosion Science, 2008, 50, 1406-1413.	3.0	86
90	Corrosion-induced release of the main alloying constituents of manganese–chromium stainless steels in different media. Journal of Environmental Monitoring, 2008, 10, 1084.	2.1	12

#	Article	IF	CITATIONS
91	The Role of Intermetallic Particles in Localized Corrosion of an Aluminum Alloy Studied by SKPFM and Integrated AFM/SECM. Journal of the Electrochemical Society, 2008, 155, C211.	1.3	110
92	Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium- a comparison. Journal of Environmental Monitoring, 2008, 10, 1092.	2.1	45
93	2007 W.R. Whitney Award Lecture:Molecular In Situ Studies of Atmospheric Corrosion. Corrosion, 2007, 63, 715-721.	0.5	7
94	A Spectroelectrochemical Study of Metal/Polymer Interfaces by Simultaneous In Situ ATR-FTIR and EIS. Electrochemical and Solid-State Letters, 2007, 10, C27.	2.2	25
95	Atmospheric Corrosion Effects of HNO[sub 3]. Journal of the Electrochemical Society, 2007, 154, C249.	1.3	8
96	Metal release from various grades of stainless steel exposed to synthetic body fluids. Corrosion Science, 2007, 49, 103-111.	3.0	67
97	Quantitative In Situ Analysis of Initial Atmospheric Corrosion of Copper Induced by Acetic Acid. Journal of the Electrochemical Society, 2007, 154, C272.	1.3	42
98	Metal release from stainless steel particles in vitro—influence of particle size. Journal of Environmental Monitoring, 2007, 9, 74-81.	2.1	52
99	Modelling and mapping of copper runoff for Europe. Journal of Environmental Monitoring, 2007, 9, 66-73.	2.1	22
100	Adsorption and Structure of Octadecanethiol on Zinc Surfaces As Probed by Sum Frequency Generation Spectroscopy, Imaging, and Electrochemical Techniques. Journal of Physical Chemistry C, 2007, 111, 17587-17596.	1.5	29
101	Corrosion Resistance, Chemical Passivation, and Metal Release of 35N LT and MP35N for Biomedical Material Application. Journal of the Electrochemical Society, 2007, 154, C546.	1.3	24
102	Initial Atmospheric Corrosion of Copper Induced by Carboxylic Acids. Journal of the Electrochemical Society, 2007, 154, C611.	1.3	36
103	Release and chemical speciation of copper from anti-fouling paints with different active copper compounds in artificial seawater. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 165-172.	0.8	29
104	Integrated AFM and SECM for in situ studies of localized corrosion of Al alloys. Electrochimica Acta, 2007, 52, 7697-7705.	2.6	124
105	Nickel release from nickel particles in artificial sweat. Contact Dermatitis, 2007, 56, 325-330.	0.8	24
106	In-situ Impedence Spectroscopy Study of Electrical Conductivity and Ionic Transport in Thermally Grown Oxide Scales on a Commercial FeCrAl Alloy. Oxidation of Metals, 2007, 68, 253-269.	1.0	6
107	Fabrication of Porous Nb[sub 2]O[sub 5] by Plasma Electrolysis Anodization and Electrochemical Characterization of the Oxide. Journal of the Electrochemical Society, 2006, 153, B225.	1.3	18
108	In-situ measurements by impedance spectroscopy of highly resistive α-alumina. Corrosion Science, 2006, 48, 243-257.	3.0	16

#	Article	IF	CITATIONS
109	Factors that influence the release of metals from stainless steels exposed to physiological media. Corrosion Science, 2006, 48, 2120-2132.	3.0	55
110	Elaboration of a test method for the study of metal release from stainless steel particles in artificial biological media. Corrosion Science, 2006, 48, 2855-2866.	3.0	37
111	Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corrosion Science, 2006, 48, 4316-4338.	3.0	69
112	Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM. Applied Surface Science, 2006, 252, 5499-5503.	3.1	66
113	Corrosion-Induced Release and Environmental Interaction of Chromium, Nickel and Iron from Stainless Steel. Water, Air, and Soil Pollution, 2006, 170, 17-35.	1.1	21
114	Occurrence and fate of corrosion-induced zinc in runoff water from external structures. Science of the Total Environment, 2006, 367, 908-923.	3.9	38
115	In situ ATR-FTIR studies of the aluminium/polymer interface upon exposure to water and electrolyte. Progress in Organic Coatings, 2006, 57, 78-88.	1.9	58
116	Atmospheric Corrosion of Zinc by Organic Constituents. Journal of the Electrochemical Society, 2006, 153, B547.	1.3	19
117	Atmospheric Corrosion of Zinc by Organic Constituents. Journal of the Electrochemical Society, 2006, 153, B113.	1.3	23
118	Atmospheric Corrosion of Zinc by Organic Constituents. Journal of the Electrochemical Society, 2006, 153, B542.	1.3	15
119	Electrochemical Behavior of Stimulationâ^•Sensing Materials for Pacemaker Electrode Applications. Journal of the Electrochemical Society, 2005, 152, J110.	1.3	8
120	In Situ Studies of the Effect of CO[sub 2] on the Initial NaCl-Induced Atmospheric Corrosion of Copper. Journal of the Electrochemical Society, 2005, 152, B342.	1.3	65
121	Combined Effects of Gaseous Pollutants and Sodium Chloride Particles on the Atmospheric Corrosion of Copper. Corrosion, 2005, 61, 1022-1034.	0.5	32
122	GILDES Model Studies of Aqueous Chemistry. Journal of the Electrochemical Society, 2005, 152, B178.	1.3	8
123	Investigation of Electrochemical Behavior of Stimulation/Sensing Materials for Pacemaker Electrode Applications II. Conducting Oxide Electrodes. Journal of the Electrochemical Society, 2005, 152, J85.	1.3	19
124	Effect of Carbon Dioxide on Sodium Chloride-Induced Atmospheric Corrosion of Copper. Journal of the Electrochemical Society, 2005, 152, B502.	1.3	46
125	A Vibrational Sum Frequency Spectroscopy Study of the Liquidâ^'Gas Interface of Acetic Acidâ^'Water Mixtures:Â 2. Orientation Analysis. Journal of Physical Chemistry B, 2005, 109, 329-341.	1.2	90
126	A Vibrational Sum Frequency Spectroscopy Study of the Liquidâ^'Gas Interface of Acetic Acidâ^'Water Mixtures:Â 1. Surface Speciation. Journal of Physical Chemistry B, 2005, 109, 321-328.	1.2	97

#	Article	IF	CITATIONS
127	In Situ Investigation of Localized Corrosion of Aluminum Alloys in Chloride Solution Using Integrated EC-AFM/SECM Techniques. Electrochemical and Solid-State Letters, 2005, 8, B21.	2.2	88
128	Tafel slopes used in monitoring of copper corrosion in a bentonite/groundwater environment. Corrosion Science, 2005, 47, 3267-3279.	3.0	42
129	In Situ Studies of the Effect of SO[sub 2] on the Initial NaCl-Induced Atmospheric Corrosion of Copper. Journal of the Electrochemical Society, 2005, 152, B526.	1.3	24
130	In Situ Studies of Sulfate Nest Formation on Iron. Journal of the Electrochemical Society, 2004, 151, B497.	1.3	22
131	In Situ Studies of Filiform Corrosion of Iron. Journal of the Electrochemical Society, 2004, 151, B165.	1.3	41
132	Self-diffusion activation energies in α-Al ₂ O ₃ below 1000°C – measurements and molecular dynamics calculation. Philosophical Magazine Letters, 2004, 84, 781-789.	0.5	18
133	Investigation of Pt, Ti, TiN, and nano-porous carbon electrodes for implantable cardioverter-defibrillator applications. Electrochimica Acta, 2004, 49, 4011-4020.	2.6	11
134	Predictive models of copper runoff from external structures. Journal of Environmental Monitoring, 2004, 6, 704.	2.1	21
135	Characterization of Ferrite-Austenite Boundary Region of Duplex Stainless Steels by SAES. Journal of the Electrochemical Society, 2004, 151, B581.	1.3	31
136	Photoelectron microscopy of filiform corrosion of aluminum. Applied Surface Science, 2003, 218, 155-162.	3.1	11
137	Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy for Characterization of Duplex Stainless Steels. Journal of the Electrochemical Society, 2003, 150, B274.	1.3	72
138	Influence of Surface Treatment of Type 304L Stainless Steel on Atmospheric Corrosion Resistance in Urban and Marine Environments. Corrosion, 2003, 59, 220-227.	0.5	29
139	In Situ Local Dissolution of Duplex Stainless Steels in 1 M H[sub 2]SO[sub 4] + 1â€,Mâ€,NaCl by Electrochemical Scanning Tunneling Microscopy. Journal of the Electrochemical Society, 2002, 149, B187.	1.3	32
140	The evolution of outdoor copper patina. Corrosion Science, 2002, 44, 425-450.	3.0	156
141	Multianalytical in situ investigation of the initial atmospheric corrosion of bronze. Corrosion Science, 2002, 44, 791-802.	3.0	45
142	Determination of instantaneous corrosion rates and runoff rates of copper from naturally patinated copper during continuous rain events. Corrosion Science, 2002, 44, 2131-2151.	3.0	86
143	Release rates of chromium and nickel from 304 and 316 stainless steel during urban atmospheric exposure—a combined field and laboratory study. Corrosion Science, 2002, 44, 2303-2319.	3.0	33
144	Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. New Biotechnology, 2002, 19, 67-71.	2.7	108

#	Article	IF	CITATIONS
145	Comparison of the early stages of corrosion of copper and iron investigated by in situ TM-AFM. Applied Surface Science, 2002, 193, 245-253.	3.1	24
146	A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corrosion Science, 2001, 43, 127-146.	3.0	120
147	Atmospheric corrosion of zinc-based materials: runoff rates, chemical speciation and ecotoxicity effects. Corrosion Science, 2001, 43, 809-816.	3.0	61
148	In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy. Corrosion Science, 2001, 43, 1939-1951.	3.0	81
149	Seasonal variations in corrosion rate and runoff rate of copper roofs in an urban and a rural atmospheric environment. Corrosion Science, 2001, 43, 2379-2396.	3.0	73
150	Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion. Science of the Total Environment, 2001, 277, 169-180.	3.9	40
151	Scenarios for Atmospheric Corrosion in the 21st Century. Electrochemical Society Interface, 2001, 10, 24-30.	0.3	9
152	A comparison of preparation methods of copper surfaces for in situ scanning force microscopy investigations. Applied Surface Science, 2000, 157, 39-46.	3.1	16
153	Experimental in situ studies of copper exposed to humidified air. Corrosion Science, 2000, 42, 957-967.	3.0	65
154	Electrochemical investigation of pickled and polished 304L stainless steel tubes. Corrosion Science, 2000, 42, 1457-1469.	3.0	12
155	Effects of exposure direction and inclination on the runoff rates of zinc and copper roofs. Corrosion Science, 2000, 42, 1471-1487.	3.0	74
156	Corrosion Mechanisms for Nickel Exposed to the Atmosphere. Journal of the Electrochemical Society, 2000, 147, 1010.	1.3	55
157	In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone, and Nitrogen Dioxide. Journal of the Electrochemical Society, 2000, 147, 2543.	1.3	57
158	Passivation and Anodic Oxidation of Duplex TiN Coating on Stainless Steel. Journal of the Electrochemical Society, 1999, 146, 4082-4086.	1.3	38
159	Duplex TiN coatings deposited by arc plating for increased corrosion resistance of stainless steel substrates. Surface and Coatings Technology, 1999, 114, 129-136.	2.2	77
160	Characterization of black rust staining of unpassivated 55% Al–Zn alloy coatings. Effect of temperature, pH and wet storage. Corrosion Science, 1999, 41, 2229-2249.	3.0	36
161	Corrosion measurements of silver and copper in indoor atmospheres using different evaluation techniques. Corrosion Engineering Science and Technology, 1999, 34, 27-33.	0.3	12
162	Title is missing!. Oxidation of Metals, 1998, 50, 431-455.	1.0	81

#	Article	IF	CITATIONS
163	Eis and XPS study of surface modification of 316LVM stainless steel after passivation. Corrosion Science, 1998, 41, 275-289.	3.0	177
164	In Situ Infrared Reflection Absorption Spectroscopy Studies of Sulfuric Acid Formation on Platinum and Palladium Surfaces. Journal of the Electrochemical Society, 1998, 145, 487-492.	1.3	1
165	Characterisation of corrosivity in indoor atmospheres with different metals and evaluation techniques. Corrosion Engineering Science and Technology, 1998, 33, 59-66.	0.3	13
166	A Sensor System for High Resolution In Situ Atmospheric Corrosivity Monitoring in Field Environments. Journal of the Electrochemical Society, 1997, 144, 2637-2642.	1.3	18
167	In Situ Weight Gain Rates on Copper during Outdoor Exposures: Dependence on Airborne Pollutants and Climatic Parameters. Journal of the Electrochemical Society, 1997, 144, 113-120.	1.3	35
168	Simultaneous Infrared Reflection Absorption Spectroscopy and Quartz Crystal Microbalance Measurements for In Situ Studies of the Metal/Atmosphere Interface. Journal of the Electrochemical Society, 1997, 144, 2986-2990.	1.3	61
169	Atmospheric Corrosion Effects of  SO 2,  NO 2, and  O 3 : A Comparison of Laboratory Nickel. Journal of the Electrochemical Society, 1997, 144, 3513-3517.	and Field 1.3	Exposed
170	Humidity Sorption Due to Deposited Aerosol Particles Studied In Situ Outdoors on Gold Surfaces. Journal of the Electrochemical Society, 1997, 144, 105-113.	1.3	18
171	A study of copper runoff in an urban atmosphere. Corrosion Science, 1997, 39, 2039-2052.	3.0	54
172	Gildes model studies of aqueous chemistry. II. The corrosion of zinc in gaseous exposure chambers. Corrosion Science, 1996, 38, 2181-2199.	3.0	36
173	Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 1996, 41, 1143-1153.	2.6	557
174	A Quartz Crystal Microbalance Probe Developed for Outdoor In Situ Atmospheric Corrosivity Monitoring. Journal of the Electrochemical Society, 1996, 143, 839-844.	1.3	20
175	Initial Interaction of Sulfur Dioxide with Water Covered Metal Surfaces: An In Situ IRAS Study. Journal of the Electrochemical Society, 1995, 142, 1459-1468.	1.3	51
176	Electrochemical Studies of the Influence of Beryllium on the Corrosion Resistance of Niâ€25Crâ€10Mo Cast Alloys for Dental Applications. Journal of the Electrochemical Society, 1995, 142, 1454-1458.	1.3	14
177	Atmospheric Corrosion Effects of  SO 2 and  NO 2 : A Comparison of Laboratory and Fieldâ€Exp Copper. Journal of the Electrochemical Society, 1995, 142, 749-756.	osgd	39
178	Atmospheric Corrosion of Copper in a Rural Atmosphere. Journal of the Electrochemical Society, 1995, 142, 3682-3689.	1.3	56
179	Metal Carboxylate Formation during Indoor Atmospheric Corrosion of Cu, Zn, and Ni. Journal of the Electrochemical Society, 1995, 142, 1468-1477.	1.3	49
180	Atmospheric Corrosion Effects of  SO 2 and  O 3 on Laboratoryâ€Exposed Copper. Journal of th Electrochemical Society, 1995, 142, 757-760.	e 1.3	20

#	Article	IF	CITATIONS
181	Analysis of Corrosion Products Formed on Copper in Cl2 /  H 2 S  /  NOá Electrochemical Society, 1995, 142, 3690-3696.	쀉32 Exp	osure. Journ
182	Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. Journal of Biomedical Materials Research Part B, 1994, 28, 113-122.	3.0	147
183	The formation of Zn4Cl2(OH)4SO4 · 5H2O in an urban and an industrial atmosphere. Corrosion Science, 1994, 36, 1551-1559.	3.0	76
184	The formation of Zn4SO4(OH)6·4H2O in a rural atmosphere. Corrosion Science, 1994, 36, 1077-1087.	3.0	44
185	Formation of NaZn4Cl(OH)6SO4 · 6H2O in a marine atmosphere. Corrosion Science, 1993, 34, 1213-1229.	3.0	119
186	In Situ Infrared Reflection Absorption Spectroscopy for Studies of Atmospheric Corrosion. Journal of the Electrochemical Society, 1993, 140, 1256-1260.	1.3	77
187	Acid Deposition Effects on Materials: Evaluation of Nickel After Four Years of Exposure. Journal of the Electrochemical Society, 1993, 140, 1912-1916.	1.3	2
188	Quartz crystal microbalance applied to studies of atmospheric corrosion of metals. Corrosion Engineering Science and Technology, 1992, 27, 295-298.	0.3	15
189	Analysis of Atmospheric Corrosion Products of Field Exposed Nickel. Journal of the Electrochemical Society, 1992, 139, 2243-2249.	1.3	14
190	Raman spectroscopy and XPS investigations of anodic corrosion films formed on FeMo alloys in alkaline solutions. Corrosion Science, 1991, 32, 273-284.	3.0	81
191	Acid Deposition Effects on Materials: Evaluation of Nickel and Copper. Journal of the Electrochemical Society, 1991, 138, 3592-3598.	1.3	15
192	A Comparison Between Analytical Methods for Zinc Specimens Exposed in a Rural Atmosphere. Journal of the Electrochemical Society, 1991, 138, 1923-1928.	1.3	19
193	Vibrational Spectroscopy and XPS for Atmospheric Corrosion Studies on Copper. Journal of the Electrochemical Society, 1990, 137, 3163-3169.	1.3	39
194	Methyl Substitution in Benzotriazole and Its Influence on Surface Structure and Corrosion Inhibition. Journal of the Electrochemical Society, 1989, 136, 58-64.	1.3	123
195	In‣itu Raman Spectroscopy Combined with Xâ€Ray Photoelectron Spectroscopy and Nuclear Microanalysis for Studies of Anodic Corrosion Film Formation on Feâ€Cr Single Crystals. Journal of the Electrochemical Society, 1988, 135, 305-310.	1.3	94
196	The dissolution behaviour of iron, chromium, molybdenum and copper from pure metals and from ferritic stainless steels. Corrosion Science, 1987, 27, 937-946.	3.0	58
197	Effects of electrochemical reduction of polycrystalline TiO2 photoelectrodes in acidic solutions. Solar Energy Materials and Solar Cells, 1987, 15, 367-382.	0.4	19
198	The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution. Corrosion Science, 1986, 26, 949-960.	3.0	115

#	Article	IF	CITATIONS
199	Studies of Corrosion Kinetics on Electrical Contact Materials by Means of Quartz Crystal Microbalance and XPS. Journal of the Electrochemical Society, 1986, 133, 873-876.	1.3	22
200	Evaluation of Laboratory Tests to Simulate Indoor Corrosion of Electrical Contact Materials. Journal of the Electrochemical Society, 1986, 133, 21-30.	1.3	28
201	Electrochemical Behavior and Surface Composition of Copper Containing Ferritic Stainless Steel in Sulfuric Acid Solution. Corrosion Engineering, 1986, 35, 283-288.	0.1	3
202	Enhanced Raman Scattering of 1,2,4â€Triazole and Imidazole Adsorbed on Microlithographically Prepared Copper Surfaces. Journal of the Electrochemical Society, 1986, 133, 2236-2239.	1.3	38
203	The influence of photoalteration on surface-enhanced Raman scattering from copper electrodes. Surface Science, 1985, 149, 592-600.	0.8	16
204	Simultaneous Raman Spectroscopy and Electrochemical Studies of Corrosion Inhibiting Molecules on Copper. Journal of the Electrochemical Society, 1985, 132, 1009-1014.	1.3	81
205	An xps investigation of dichromate and molybdate inhibitors on aluminum. Corrosion Science, 1985, 25, 69-73.	3.0	44
206	Corrosion resistance of a passivated and nonâ€passivated cobaltâ€chromium alloy. European Journal of Oral Sciences, 1984, 92, 262-267.	0.7	6
207	The preparation and selected properties of Mg-doped p-type iron oxide as a photocathode for the photocelectrolysis of water using visible light. Journal of Solid State Chemistry, 1983, 48, 357-367.	1.4	45
208	Photodissociation of water by p- and n-type polycrystalline iron oxides by using visible light (<=2.7 eV) in the absence of external potential. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5739-5741.	3.3	22
209	The initiation of selective oxidation of a ferritic stainless steel at low temperatures and oxygen pressures. Corrosion Science, 1982, 22, 331-346.	3.0	31
210	Mg- and Si-doped iron oxides for the photocatalyzed production of hydrogen from water by visible light (2.2 eV \$le; hv \$le; 2.7 eV). Journal of Catalysis, 1982, 78, 341-351.	3.1	48
211	Selective oxidation of a ferritic stainless steel and its influence on resistance to crevice corrosion initiation. Corrosion Science, 1981, 21, 401-408.	3.0	10
212	Critical Film Composition for the Initiation of Crevice Corrosion of Type 304 and 316 Stainless Steels. Corrosion, 1981, 37, 363-368.	0.5	2
213	Surface Composition of Stainless Steel during Propagation of Crevice Corrosion. Corrosion, 1981, 37, 21-28.	0.5	4
214	Highly protective films on stainless steels. Materials Science and Engineering, 1980, 42, 199-206.	0.1	30
215	Surface Composition of a Type 316 Stainless Steel Related to Initiation of Crevice Corrosion. Corrosion, 1980, 36, 126-129.	0.5	45
216	Thermal passivation of AISI 316 stainless steel in controlled vacuum. Journal of Vacuum Science and Technology, 1980, 17, 85-88.	1.9	11

#	Article	IF	CITATIONS
217	Selective dissolution and surface enrichment of alloy components of passivated Fe18Cr and Fe18Cr3Mo single crystals. Corrosion Science, 1979, 19, 343-357.	3.0	92
218	Studies of the photochromic properties of the system CuCl(s)î—H2O(l) using auger electron spectroscopy. Journal of Photochemistry and Photobiology, 1977, 7, 51-58.	0.6	6
219	Lateral lattice spacings of Feî—,Cr(100) and Feî—,Cr(110) surfaces. Surface Science, 1976, 61, 60-68.	0.8	22
220	Initial oxidation stages on Feî—,Cr(100) and Feî—,Cr(110) surfaces. Surface Science, 1976, 61, 69-84.	0.8	74
221	The structure of defect Ru4Si3. Journal of Solid State Chemistry, 1975, 14, 78-84.	1.4	15
222	A LEED/AES study of the oxidation of Fe0.84Cr0.16 (100) and (110). Surface Science, 1975, 51, 409-432.	0.8	59
223	Surface composition studies of the (100) and (110) faces of monocrystalline Fe0·84Cr0·16. Surface Science, 1974, 46, 157-176.	0.8	91
224	A LEED-AES study of the oxidation of cr(110) and Cr(100). Surface Science, 1973, 40, 179-199.	0.8	107
225	A LEED-AES study of the oxidation of Fe (110) and Fe (100). Surface Science, 1973, 40, 609-635.	0.8	145
226	A low energy electron diffraction technique for accurate absolute determination of surface lattice constants. Vacuum, 1972, 22, 489-491.	1.6	9
227	Reaction Sequences in Atmospheric Corrosion of Zinc. , 0, , 215-215-15.		16