Yacine Hemar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6918631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of NaCl and CaCl2 concentration on the rheological and structural characteristics of thermally-induced quinoa protein gels. Food Hydrocolloids, 2022, 124, 107350.	10.7	42
2	Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) study on the structure of sodium caseinate in dispersions and at the oil-water interface: Effect of calcium ions. Food Structure, 2022, 32, 100276.	4.5	10
3	Supramolecular structure of quinoa starch affected by nonenyl succinic anhydride (NSA) substitution. International Journal of Biological Macromolecules, 2022, 218, 181-189.	7.5	9
4	In-situ SAXS investigation of high-pressure triglyceride polymorphism in milk cream and anhydrous milk fat. LWT - Food Science and Technology, 2021, 135, 110174.	5.2	5
5	Probing the conjugation of epigallocatechin gallate with β-lactoglobulin and its <i>in vivo</i> desensitization efficiency. Food and Function, 2021, 12, 11343-11350.	4.6	14
6	Gelatin-Based Nanocomposites: A Review. Polymer Reviews, 2021, 61, 765-813.	10.9	24
7	Viscosity, size, structural and interfacial properties of sodium caseinate obtained from A2 milk. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126163.	4.7	6
8	Prediction of dairy powder functionality attributes using diffuse reflectance in the visible and near infrared (Vis-NIR) region. International Dairy Journal, 2021, 117, 104981.	3.0	6
9	Relationships between supramolecular organization and amylopectin fine structure of quinoa starch. Food Hydrocolloids, 2021, 117, 106685.	10.7	13
10	Effects of pasteurization, microfiltration, and ultraviolet-c treatments on microorganisms and bioactive proteins in bovine skim milk. Food Bioscience, 2021, 43, 101339.	4.4	4
11	In-flow SAXS investigation of whey protein isolate hydrolyzed by bromelain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127662.	4.7	5
12	Unveiling the structure of the primary caseinate particle using small-angle X-ray scattering and simulation methodologies. Food Research International, 2021, 149, 110653.	6.2	9
13	Formation and characterisation of high-internal-phase emulsions stabilised by high-pressure homogenised quinoa protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127688.	4.7	29
14	Formation by high power ultrasound of aggregated emulsions stabilised with milk protein concentrate (MPC70). Ultrasonics Sonochemistry, 2021, 81, 105852.	8.2	7
15	Improvement of calcium sulfate-induced gelation of soy protein via incorporation of soy oil before and after thermal denaturation. LWT - Food Science and Technology, 2020, 117, 108690.	5.2	19
16	Glycerol induced stability enhancement and conformational changes of β-lactoglobulin. Food Chemistry, 2020, 308, 125596.	8.2	12
17	Size reduction of "reformed casein micelles―by high-power ultrasound and high hydrostatic pressure. Ultrasonics Sonochemistry, 2020, 63, 104929	8.2	20
18	Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chemistry, 2020, 310, 125983.	8.2	91

#	Article	IF	CITATIONS
19	Prospecting the applications and discovery of peptide hydrogels in food. Trends in Food Science and Technology, 2020, 104, 37-48.	15.1	15
20	Effects of particle size and aging of milk protein concentrate on the biophysical properties of an intermediate-moisture model food system. Food Bioscience, 2020, 37, 100698.	4.4	11
21	Solubilisation of micellar casein powders by high-power ultrasound. Ultrasonics Sonochemistry, 2020, 67, 105131.	8.2	25
22	Extraction of tetracycline in food samples using biochar microspheres prepared by a Pickering emulsion method. Food Chemistry, 2020, 329, 127162.	8.2	22
23	Effect of porous waxy rice starch addition on acid milk gels: Structural and physicochemical functionality. Food Hydrocolloids, 2020, 109, 106092.	10.7	7
24	Effect of genipin cross-linking on the structural features of skim milk in the presence of ethylenediaminetetraacetic acid (EDTA). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125174.	4.7	11
25	Insights on the structure of caseinate particles based on surfactants-induced dissociation. Food Hydrocolloids, 2020, 104, 105766.	10.7	10
26	Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry, 2020, 67, 105140.	8.2	46
27	A Chemometric Analysis of Compounds from Native New Zealand Medicinal Flora. Chemistry - an Asian Journal, 2019, 14, 1117-1127.	3.3	3
28	Interfacial Structures of Droplet-Stabilized Emulsions Formed with Whey Protein Microgel Particles as Revealed by Small- and Ultra-Small-Angle Neutron Scattering. Langmuir, 2019, 35, 12017-12027.	3.5	22
29	Molecular characterization of the β-lactoglobulin conjugated with fluorescein isothiocyanate: Binding sites and structure changes as function of pH. International Journal of Biological Macromolecules, 2019, 140, 377-383.	7.5	15
30	A theoretical and experimental investigation of the effect of sodium dodecyl sulfate on the structural and conformational properties of bovine β-casein. Soft Matter, 2019, 15, 1551-1561.	2.7	11
31	Supramolecular structure of high hydrostatic pressure treated quinoa and maize starches. Food Hydrocolloids, 2019, 92, 276-284.	10.7	38
32	Effect of transglutaminase and acidification temperature on the gelation of reconstituted skim milk. International Dairy Journal, 2019, 92, 59-68.	3.0	8
33	Self-Assembled Micelles Based on OSA-Modified Starches for Enhancing Solubility of β-Carotene: Effect of Starch Macromolecular Architecture. Journal of Agricultural and Food Chemistry, 2019, 67, 6614-6624.	5.2	46
34	Battacin-Inspired Ultrashort Peptides: Nanostructure Analysis and Antimicrobial Activity. Biomacromolecules, 2019, 20, 2515-2529.	5.4	25
35	How much can we trust polysorbates as food protein stabilizers - The case of bovine casein. Food Hydrocolloids, 2019, 96, 81-92.	10.7	15
36	Rheological and structural characterization of acidified skim milks and infant formulae made from cow and goat milk. Food Hydrocolloids, 2019, 96, 161-170.	10.7	41

IF

CITATIONS

37	Effect of amyloglucosidase hydrolysis on the multi-scale supramolecular structure of corn starch. Carbohydrate Polymers, 2019, 212, 40-50.	10.2	38
38	Assessment of Bioactive Potential of Aqueous Protein Extracts from Diatoms <i>Nitzschia laevis, Spirulina platensis</i> , and <i>Chlorella vulgaris</i> . Journal of Aquatic Food Product Technology, 2019, 28, 177-193.	1.4	5
39	Effects of skim milk pre-acidification and retentate pH-restoration on spray-drying performance, physico-chemical and functional properties of milk protein concentrates. Food Chemistry, 2019, 272, 539-548.	8.2	31
40	Low frequency ultrasound inactivation of thermophilic bacilli (Geobacillus spp. and Anoxybacillus) Tj ETQq0 0 0 rg Sonochemistry, 2019, 51, 325-331.	BT /Overlc 8.2	ock 10 Tf 5 15
41	Membrane-based fractionation, enzymatic dephosphorylation, and gastrointestinal digestibility of β-casein enriched serum protein ingredients. Food Hydrocolloids, 2019, 88, 1-12.	10.7	14
42	Purification and characterisation of a protease (tamarillin) from tamarillo fruit. Food Chemistry, 2018, 256, 228-234.	8.2	29
43	Protease activity of enzyme extracts from tamarillo fruit and their specific hydrolysis of bovine caseins. Food Research International, 2018, 109, 380-386.	6.2	19
44	Effect of temperature and pH on the properties of skim milk gels made from a tamarillo (Cyphomandra) Tj ETQqO	0.0 rgBT /0 3.4	Oyerlock
45	Characteristics and Properties of Gelatin from Seabass (LatesÂcalcarifer) Swim Bladder : Impact of Extraction Temperatures. Waste and Biomass Valorization, 2018, 9, 315-325.	3.4	19
46	Physical and sensory properties of gelatin from seabass (<i>Lates calcarifer</i>) as affected by agar and κâ€carrageenan. Journal of Texture Studies, 2018, 49, 47-55.	2.5	15
47	Production of bioactive proteins and peptides from the diatom <i>Nitzschia laevis</i> and comparison of their <i>inÂvitro</i> antioxidant activities with those from <i>Spirulina platensis</i> and <i>Chlorella vulgaris</i> . International Journal of Food Science and Technology, 2018, 53, 676-682.	2.7	31
48	Rheological and structural properties of coagulated milks reconstituted in D2O: Comparison between rennet and a tamarillo enzyme (tamarillin). Food Hydrocolloids, 2018, 79, 170-178.	10.7	22
49	In situ study of skim milk structure changes under high hydrostatic pressure using synchrotron SAXS. Food Hydrocolloids, 2018, 77, 772-776.	10.7	23
50	Enzymatic formation of galactooligosaccharides in goat milk. Food Bioscience, 2018, 26, 38-41.	4.4	10
51	Flavonoid-Rich Extract of Actinidia macrosperma (A Wild Kiwifruit) Inhibits Angiotensin-Converting Enzyme In Vitro. Foods, 2018, 7, 146.	4.3	35
52	Supramolecular Threading of Peptide Hydrogel Fibrils. ACS Biomaterials Science and Engineering, 2018, 4, 2733-2738.	5.2	12
53	The effect of transglutaminase on reconstituted skim milks at alkaline pH. Food Hydrocolloids, 2018, 85, 10-20.	10.7	10
54	Investigation on the pitting of potato starch granules during high frequency ultrasound treatment. Ultrasonics Sonochemistry, 2017, 35, 547-555.	8.2	35

ARTICLE

#

#	Article	IF	CITATIONS
55	The effect of transglutaminase treatment on the physico-chemical properties of skim milk with added ethylenediaminetetraacetic acid. Food Hydrocolloids, 2017, 69, 329-340.	10.7	18
56	Effect of partial acidification on the ultrafiltration and diafiltration of skim milk: Physico-chemical properties of the resulting milk protein concentrates. Journal of Food Engineering, 2017, 212, 55-64.	5.2	33
57	Biochemical and physico-chemical changes of skim milk during acidification with glucono-l´-lactone and hydrogen chloride. Food Hydrocolloids, 2017, 66, 99-109.	10.7	13
58	Physical and rheological properties of fish gelatin gel as influenced by κ-carrageenan. Food Bioscience, 2017, 20, 88-95.	4.4	68
59	Multifunctional thermoresponsive designer peptide hydrogels. Acta Biomaterialia, 2017, 47, 40-49.	8.3	13
60	Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocolloids, 2017, 68, 164-177.	10.7	74
61	Understanding the metal mediated assembly and hydrogel formation of a β-hairpin peptide. Biomaterials Science, 2017, 5, 1993-1997.	5.4	10
62	Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate. PLoS ONE, 2016, 11, e0156061.	2.5	12
63	Ultrasonic Inactivation of Microorganisms. , 2016, , 1355-1381.		3
64	Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chemical Society Reviews, 2016, 45, 4797-4824.	38.1	135
65	Rheological and sensory properties of fish gelatin gels as influenced by agar from <i>Gracilaria tenuistipitata</i> . International Journal of Food Science and Technology, 2016, 51, 1530-1536.	2.7	12
66	In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS. Food Hydrocolloids, 2016, 56, 58-61.	10.7	56
67	Effect of calcium sequestration by ion-exchange treatment on the dissociation of casein micelles in model milk protein concentrates. Food Hydrocolloids, 2016, 60, 59-66.	10.7	52
68	Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. International Journal of Biological Macromolecules, 2016, 85, 604-614.	7.5	52
69	Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules, 2016, 17, 590-600.	5.4	88
70	Viscosity and hydrodynamic radius relationship of high-power ultrasound depolymerised starch pastes with different amylose content. Food Hydrocolloids, 2016, 52, 183-191.	10.7	56
71	Investigating linear and nonlinear viscoelastic behaviour and microstructures of gelatin-multiwalled carbon nanotube composites. RSC Advances, 2015, 5, 107916-107926.	3.6	21
72	Structural features of a novel polysaccharide isolated from a New Zealand Maori mushroom Iliodiction cibarium. Carbohydrate Research, 2015, 406, 19-26.	2.3	10

#	Article	IF	CITATIONS
73	The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. Ultrasonics Sonochemistry, 2015, 27, 567-575.	8.2	105
74	Acid-induced aggregation and gelation of natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 9-17.	4.7	26
75	Zooming in: Structural Investigations of Rheologically Characterized Hydrogen-Bonded Low-Methoxyl Pectin Networks. Biomacromolecules, 2015, 16, 3209-3216.	5.4	23
76	Colour change and proteolysis of skim milk during high pressure thermal–processing. Journal of Food Engineering, 2015, 147, 102-110.	5.2	42
77	Ultrasonic Inactivation of Microorganisms. , 2015, , 1-27.		0
78	Calcium Phosphates in Ca ²⁺ -Fortified Milk: Phase Identification and Quantification by Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2014, 62, 12223-12228.	5.2	14
79	Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrasonics Sonochemistry, 2014, 21, 454-460.	8.2	99
80	Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrasonics Sonochemistry, 2014, 21, 446-453.	8.2	182
81	Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound. Ultrasonics Sonochemistry, 2014, 21, 2099-2106.	8.2	51
82	Non-targeted analysis by LC–MS of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chemistry, 2014, 151, 394-403.	8.2	59
83	Chemical modification of New Zealand hoki (Macruronus novaezelandiae) skin gelatin and its properties. Food Chemistry, 2014, 155, 64-73.	8.2	33
84	Modification of the structural and rheological properties of whey protein/gelatin mixtures through high pressure processing. Food Chemistry, 2014, 156, 243-249.	8.2	22
85	Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research, 2014, 60, 93-104.	11.3	109
86	Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioactive Carbohydrates and Dietary Fibre, 2014, 3, 41-51.	2.7	102
87	The physicochemical properties of a new class of anticancer fungal polysaccharides: A comparative study. Carbohydrate Polymers, 2013, 97, 177-187.	10.2	24
88	In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction. Carbohydrate Polymers, 2013, 97, 235-238.	10.2	47
89	Rheological characteristics of EVA modified bitumen and their correlations with bitumen concrete properties. Construction and Building Materials, 2013, 48, 1202-1208.	7.2	31
90	Analysis of metabolic markers of tea origin by UHPLC and high resolution mass spectrometry. Food Research International, 2013, 53, 827-835.	6.2	51

#	Article	IF	CITATIONS
91	Monitoring tea fermentation/manufacturing by direct analysis in real time (DART) mass spectrometry. Food Chemistry, 2013, 141, 2060-2065.	8.2	33
92	Effect of high pressure processing on rheological and structural properties of milk–gelatin mixtures. Food Chemistry, 2013, 141, 1328-1334.	8.2	19
93	Phase stability-induced complex rheological behaviour of galactomannan and maltodextrin mixtures. Food and Function, 2013, 4, 627.	4.6	9
94	Optimization of gelatine gel preparation from New Zealand hoki (Macruronus novaezelandiae) skins and the effect of transglutaminase enzyme on the gel properties. Food Hydrocolloids, 2013, 31, 204-209.	10.7	30
95	Structuring dairy systems through high pressure processing. Journal of Food Engineering, 2013, 114, 106-122.	5.2	64
96	HPLC–MS/MS profiling of proanthocyanidins in teas: A comparative study. Journal of Food Composition and Analysis, 2012, 26, 43-51.	3.9	31
97	Antitumor activity of mushroom polysaccharides: a review. Food and Function, 2012, 3, 1118.	4.6	370
98	Facilitating high-force single-polysaccharide stretching using covalent attachment of one end of the chain. Carbohydrate Polymers, 2012, 87, 806-815.	10.2	4
99	Segregative phase separation in agarose/whey protein systems induced by sequence-dependent trapping and change in pH. Carbohydrate Polymers, 2012, 87, 2100-2108.	10.2	13
100	Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry. Food Chemistry, 2012, 134, 1616-1623.	8.2	46
101	Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry, 2012, 19, 421-426.	8.2	80
102	Conjugation of Bovine Serum Albumin and Glucose under Combined High Pressure and Heat. Journal of Agricultural and Food Chemistry, 2011, 59, 3915-3923.	5.2	31
103	Investigation into the interaction between resveratrol and whey proteins using fluorescence spectroscopy. International Journal of Food Science and Technology, 2011, 46, 2137-2144.	2.7	62
104	Small-deformation rheology investigation of rehydrated cell wall particles–xanthan mixtures. Food Hydrocolloids, 2011, 25, 668-676.	10.7	31
105	Rheological investigations of the interactions between starch and milk proteins in model dairy systems: A review. Food Hydrocolloids, 2011, 25, 2008-2017.	10.7	90
106	Towards polysaccharide handles for single molecule experiments: Spectroscopic evidence for the selective covalent coupling of terminal sugar residues to desired substrates. Carbohydrate Polymers, 2011, 86, 105-111.	10.2	4
107	Shear localisation in stirred yoghurt. Rheologica Acta, 2010, 49, 371-379.	2.4	7
108	Encapsulation of Resveratrol Using Water-in-Oil-in-Water Double Emulsions. Food Biophysics, 2010, 5, 120-127.	3.0	104

#	Article	IF	CITATIONS
109	Control of Morphological and Rheological Properties of Carrot Cell Wall Particle Dispersions through Processing. Food and Bioprocess Technology, 2010, 3, 928-934.	4.7	42
110	Dynamic rheological properties of plant cell-wall particle dispersions. Colloids and Surfaces B: Biointerfaces, 2010, 81, 461-467.	5.0	44
111	The effect of high hydrostatic pressure on the flow behaviour of skim milk–gelatin mixtures. Innovative Food Science and Emerging Technologies, 2010, 11, 432-440.	5.6	14
112	Dynamic Rheological and Microstructural Properties of Normal and Waxy Rice Starch Gels Containing Milk Protein Ingredients. Starch/Staerke, 2009, 61, 214-227.	2.1	34
113	Multiple Particle Tracking Investigations of Acid Milk Gels Using Tracer Particles with Designed Surface Chemistries and Comparison with Diffusing Wave Spectroscopy Studies. Langmuir, 2009, 25, 11827-11834.	3.5	15
114	Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews, 2009, 38, 902-912.	38.1	521
115	High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 257-268.	1.5	60
116	Effect of high-pressure treatment on normal rice and waxy rice starch-in-water suspensions. Carbohydrate Polymers, 2008, 73, 332-343.	10.2	78
117	Effect of milk protein products on the rheological and thermal (DSC) properties of normal rice starch. Food Hydrocolloids, 2008, 22, 174-183.	10.7	66
118	Effect of different starches on rheological and microstructural properties of (II) commercial processed cheese. International Journal of Food Science and Technology, 2008, 43, 2197-2203.	2.7	20
119	Effect of different starches on rheological and microstructural properties of (I) model processed cheese. International Journal of Food Science and Technology, 2008, 43, 2191-2196.	2.7	29
120	Relationship Between the Pasting Behaviour and the Phosphorus Content of Different Potato Starches. Starch/Staerke, 2007, 59, 149-155.	2.1	23
121	Viscosity, Swelling and Starch Leaching During the Early Stages of Pasting of Normal and Waxy Rice Starch Suspensions Containing Different Milk Protein Ingredients. Starch/Staerke, 2007, 59, 379-387.	2.1	31
122	High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum Trichosurus vulpecula with watery and viscous perfusates. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 543-556.	1.5	52
123	Rheological and Light Scattering Properties of Flaxseed Polysaccharide Aqueous Solutions. Biomacromolecules, 2006, 7, 3098-3103.	5.4	53
124	Viscoelastic behaviour aids extrusion from and reabsorption of the liquid phase into the digesta plug: creep rheometry of hindgut digesta in the common brushtail possum Trichosurus vulpecula. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 469-475.	1.5	24
125	Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water–oil–water emulsions. Food Hydrocolloids, 2006, 20, 261-268.	10.7	146
126	Periodic fluid extrusion and models of digesta mixing in the intestine of a herbivore, the common brushtail possum (Trichosurus vulpecula). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 337-347.	1.5	44

#	Article	IF	CITATIONS
127	Dilatant Flow of Concentrated Suspensions of Rough Particles. Physical Review Letters, 2005, 95, 268302.	7.8	166
128	Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloids and Surfaces B: Biointerfaces, 2004, 38, 1-9.	5.0	28
129	Influence of Polysaccharides on the Rate of Coalescence in Oil-in-Water Emulsions Formed with Highly Hydrolyzed Whey Proteins. Journal of Agricultural and Food Chemistry, 2004, 52, 5491-5498.	5.2	36
130	Interfacial compositions, microstructure and stability of oil-in-water emulsions formed with mixtures of milk proteins and κ-carrageenan: 2. Whey protein isolate (WPI). Food Hydrocolloids, 2003, 17, 549-561.	10.7	50
131	Interfacial compositions, microstuctures and properties of oil-in-water emulsions formed with mixtures of milk proteins and κ-carrageenan: 1. Sodium caseinate. Food Hydrocolloids, 2003, 17, 539-548.	10.7	60
132	Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends in Food Science and Technology, 2002, 13, 262-274.	15.1	213
133	Computer Simulation of Diffusing-Wave Spectroscopy of Colloidal Dispersions and Particle Gels. Langmuir, 2000, 16, 5856-5863.	3.5	3
134	A diffusing wave spectroscopy study of the kinetics of Ostwald ripening in protein-stabilised oil/water emulsions. Colloids and Surfaces B: Biointerfaces, 1999, 12, 239-246.	5.0	26
135	Incorporation of thermal overlap effects into multiple scattering theory. Journal of the Acoustical Society of America, 1999, 105, 915-918.	1.1	42
136	Electrostatic Interactions in Adsorbed Protein Layers Probed by a Sedimentation Technique. Journal of Colloid and Interface Science, 1998, 206, 138-145.	9.4	17