Oxana P Taran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6918386/publications.pdf

Version: 2024-02-01

90 1,744 24 38
papers citations h-index g-index

99 99 99 1869 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Perovskite-like catalysts LaBO3 (B = Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2016, 180, 86-93.	20.2	134
2	Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2014, 146, 177-185.	20.2	83
3	Catalytic Formation of Monosaccharides: From the Formose Reaction towards Selective Synthesis. ChemSusChem, 2014, 7, 1833-1846.	6.8	80
4	Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: Impact of the mass-transfer processes on the overall kinetics. Chemical Engineering Journal, 2013, 223, 921-931.	12.7	68
5	Ruthenium Clusters on Carbon Nanofibers for Formic Acid Decomposition: Effect of Doping the Support with Nitrogen. ChemCatChem, 2015, 7, 2910-2917.	3.7	64
6	Fe-exchanged zeolites as materials for catalytic wet peroxide oxidation. Degradation of Rodamine G dye. Applied Catalysis B: Environmental, 2011, 104, 201-210.	20.2	54
7	Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catalysis Today, 2016, 278, 74-81.	4.4	54
8	Detoxication of water containing 1,1-dimethylhydrazine by catalytic oxidation with dioxygen and hydrogen peroxide over Cu- and Fe-containing catalysts. Catalysis Today, 2002, 75, 219-225.	4.4	50
9	Delignification of corncob via combined hydrodynamic cavitation and enzymatic pretreatment: process optimization by response surface methodology. Biotechnology for Biofuels, 2018, 11, 203.	6.2	49
10	Cu-containing MFI zeolites as catalysts for wet peroxide oxidation of formic acid as model organic contaminant. Applied Catalysis B: Environmental, 2013, 140-141, 506-515.	20.2	47
11	Solid Acidic NbOx/ZrO2 Catalysts for Transformation of Cellulose to Glucose and 5-Hydroxymethylfurfural in Pure Hot Water. Catalysis Letters, 2017, 147, 1485-1495.	2.6	47
12	Selective Oxidation of Glucose Over Carbon-supported Pd and Pt Catalysts. Catalysis Letters, 2010, 140, 14-21.	2.6	40
13	Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chemical Engineering Journal, 2015, 282, 108-115.	12.7	40
14	Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera,) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 50
15	Hydrothermal Solubilization–Hydrolysis–Dehydration of Cellulose to Glucose and 5-Hydroxymethylfurfural Over Solid Acid Carbon Catalysts. Topics in Catalysis, 2018, 61, 1912-1927.	2.8	37
16	Putative mechanism of the sugar formation on prebiotic Earth initiated by UV-radiation. Advances in Space Research, 2005, 36, 214-219.	2.6	35
17	Influence of the morphology and the surface chemistry of carbons on their catalytic performances in the catalytic wet peroxide oxidation of organic contaminants. Applied Catalysis A: General, 2010, 387, 55-66.	4.3	33
18	Oxidation of unsymmetrical dimethylhydrazine over heterogeneous catalysts. Catalysis Today, 2002, 75, 277-285.	4.4	32

#	Article	IF	Citations
19	The nature of autocatalysis in the Butlerov reaction. Kinetics and Catalysis, 2007, 48, 245-254.	1.0	32
20	Geological, hydrogeochemical, and microbiological characteristics of the Oil site of the Uzon caldera (Kamchatka). Russian Geology and Geophysics, 2015, 56, 39-63.	0.7	29
21	Possible prebiotic synthesis of monosaccharides from formaldehyde in presence of phosphates. Advances in Space Research, 2007, 40, 1634-1640.	2.6	28
22	Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5â€HMF and Ethanol. ChemSusChem, 2017, 10, 562-574.	6.8	28
23	The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region (Russia). BMC Microbiology, 2016, 16, 4.	3.3	27
24	The main factors affecting the catalytic properties of Ru/Cs-HPA systems in one-pot hydrolysis-hydrogenation of cellulose to sorbitol. Applied Catalysis A: General, 2020, 595, 117489.	4.3	27
25	Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples. Catalysis in Industry, 2010, 2, 381-386.	0.7	24
26	Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. III: Wet air oxidation of phenol over oxidized carbon and Rr/C catalysts. Catalysis in Industry, 2013, 5, 164-174.	0.7	24
27	Selective synthesis of erythrulose and 3-pentulose from formaldehyde and dihydroxyacetone catalyzed by phosphates in a neutral aqueous medium. Kinetics and Catalysis, 2007, 48, 550-555.	1.0	23
28	Catalytic condensation of glycolaldehyde and glyceraldehyde with formaldehyde in neutral and weakly alkaline aqueous media: Kinetics and mechanism. Kinetics and Catalysis, 2009, 50, 297-303.	1.0	22
29	One-pot synthesis of sorbitol via hydrolysis-hydrogenation of cellulose in the presence of Ru-containing composites. Bioresource Technology, 2021, 319, 124122.	9.6	22
30	Reductive Catalytic Fractionation of Flax Shive over Ru/C Catalysts. Catalysts, 2021, 11, 42.	3.5	21
31	Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides. Wood Science and Technology, 2022, 56, 437-457.	3.2	21
32	Geochemical characteristics of the sapropel sediments of small lakes in the Ob'–Irtysh interfluve. Russian Geology and Geophysics, 2014, 55, 1160-1169.	0.7	20
33	New methods for the one-pot processing of polysaccharide components (cellulose and) Tj ETQq1 1 0.784314 rgB activation. Catalysis in Industry, 2016, 8, 176-186.	T /Overloc 0.7	ck 10 Tf 50 1 20
34	Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: reaction kinetics. Research on Chemical Intermediates, 2015, 41, 9521-9537.	2.7	17
35	One-pot synthesis of formic acid <i>via</i> hydrolysis–oxidation of potato starch in the presence of cesium salts of heteropoly acid catalysts. RSC Advances, 2020, 10, 28856-28864.	3.6	17
36	Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst. Catalysts, 2021, 11, 970.	3.5	17

#	Article	IF	Citations
37	Methane Oxidation by H2O2 over Different Cu-Species of Cu-ZSM-5 Catalysts. Topics in Catalysis, 2020, 63, 203-221.	2.8	15
38	Study of the photoinduced formose reaction by flash and stationary photolysis. Mendeleev Communications, 2006, 16, 9-11.	1.6	14
39	Wet peroxide oxidation of phenol over carbon/zeolite catalysts. Kinetics and diffusion study in batch and flow reactors. Journal of Environmental Chemical Engineering, 2018, 6, 2551-2560.	6.7	14
40	Catalytic hydrogenolysis of native and organosolv lignins of aspen wood to liquid products in supercritical ethanol medium. Catalysis Today, 2021, 379, 114-123.	4.4	14
41	Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic―conditions. Advances in Space Research, 2011, 48, 441-449.	2.6	11
42	Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express, 2018, 8, 168.	3.0	11
43	Kinetics and mechanism of water catalytic oxidation by a Ru3+(bpy)3 complex in the presence of colloidal cobalt hydroxide. Kinetics and Catalysis, 2000, 41, 340-348.	1.0	10
44	The routes of association of (hydro)oxo centers on iron hydroxide at the water oxidation process: DFT predictions. Chemical Physics Letters, 2015, 619, 126-132.	2.6	10
45	Hydrolysis–dehydration of cellulose to glucose and 5-hydroxymethylfurfural over Sibunit solid acid carbon catalysts under semi-flow conditions. Wood Science and Technology, 2021, 55, 607-624.	3.2	10
46	Mineral formation in cyanobacterial mats of the Barguzin basin alkaline hot springs (Baikal Rift Zone). Doklady Earth Sciences, 2010, 430, 218-222.	0.7	9
47	Hydrochemical characteristic of sapropels in Novosibirsk oblast. Water Resources, 2016, 43, 539-545.	0.9	9
48	Relations between the Chemical Composition of Organic Matter in Lacustrine Ecosystems and the Genesis of Their Sapropel. Geochemistry International, 2018, 56, 256-265.	0.7	9
49	Spontaneous Resolution and Super-coiling in Xerogels of the Products of Photo-Induced Formose Reaction. Origins of Life and Evolution of Biospheres, 2019, 49, 187-196.	1.9	9
50	Formic Acid Production Via Methane Peroxide Oxidation Over Oxalic Acid Activated Fe-MFI Catalysts. Topics in Catalysis, 2019, 62, 491-507.	2.8	9
51	Electrical Double Layer as a Model of Interaction between Cellulose and Solid Acid Catalysts of Hydrolysis. ChemPhysChem, 2019, 20, 706-718.	2.1	9
52	Study of oxygen groups at a porous carbon surface by a new fast intermittent thermodesorption technique. Carbon, 2011, 49, 2062-2073.	10.3	8
53	Kinetic modeling of the multistep hydrolysis-dehydration of cellulose to platform molecules over a solid carbon acid catalyst in pure water. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 669-684.	1.7	8
54	Catalytic Processes and Catalyst Development in Biorefining. RSC Green Chemistry, 2018, , 25-64.	0.1	8

#	Article	IF	CITATIONS
55	Elements redistribution between organic and mineral parts of microbial mats: SR-XRF research (Baikal) Tj ETQq1 1	0.784314 1.6	rgBT /Overl
	Spectrometers, Detectors and Associated Equipment, 2009, 603, 137-140.		
56	13C NMR studies of isomerization of D-glucose in an aqueous solution of Ca(OH)2. The effect of molecular oxygen. Russian Chemical Bulletin, 2005, 54, 1967-1972.	1.5	6
57	Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. II: Wet peroxide oxidation over oxidized carbon catalysts. Catalysis in Industry, 2011, 3, 161-169.	0.7	6
58	Nickel phosphate molecular sieves VSB-5 as heterogeneous catalysts for synthesis of monosaccharides from formaldehyde and dihydroxyacetone. New Journal of Chemistry, 2012, 36, 2201.	2.8	6
59	Oxidation of Water to Molecular Oxygen by One-Electron Oxidants on Transition Metal Hydroxides. Kinetics and Catalysis, 2018, 59, 23-47.	1.0	6
60	Genesis of Organomineral Deposits in Lakes of the Central Part of the Baraba Lowland (South of West) Tj ETQq0	0 8.7gBT /C)yerlock 10 T
61	The Mechanical Activation of Crystal and Wooden Sawdust Cellulose in Various Fine-Grinding Mills. Journal of Siberian Federal University: Chemistry, 2015, 8, 386-400.	0.7	6
62	Depolymerization of Birch-Wood Organosolv Lignin Over Solid Catalysts in Supercritical Ethanol. Journal of Siberian Federal University: Chemistry, 2016, 9, 353-370.	0.7	6
63	Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst. Catalysts, 2021, 11, 1362.	3.5	6
64	Synthesis of potassium 4- $(1-azol-1-yl)-2,3,5,6$ -tetrafluorophenyltrifluoroborates from K[C6F5BF3] and alkali metal azol-1-ides. The dramatic distinction in nucleophilicity of alkali metal azol-1-ides and dialkylamides. Journal of Fluorine Chemistry, 2013, 156, 290-297.	1.7	5
65	Cu(II) oxo/hydroxides stabilized by ZSM-5 zeolite as an efficient and robust catalyst for chemical and photochemical water oxidation with Ru(bpy)33+. Catalysis Today, 2021, 375, 458-471.	4.4	5
66	Composition and Concentration of Hydrocarbons of Bottom Sediments in the CHPP-3 Diesel-Fuel Spill Zone at AO NTEC (Norilsk, Arctic Siberia). Contemporary Problems of Ecology, 2021, 14, 335-355.	0.7	5
67	Catalysts for Depolymerization of Biomass. RSC Green Chemistry, 2018, , 65-97.	0.1	5
68	Composition of Products of Birch Wood Delignification by Hydrogen Peroxide in the Medium oeAcetic Acid \$ Water \$ Catalyst TiO2B. Journal of Siberian Federal University: Chemistry, 2015, 8, 450-464.	0.7	5
69	Impact of Design on the Activity of ZrO2 Catalysts in Cellulose Hydrolysis-Dehydration to Glucose and 5-Hydroxymethylfurfural. Catalysts, 2021, 11, 1359.	3.5	5
70	Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6ÂG dye. Journal of Environmental Chemical Engineering, 2022, 10, 107950.	6.7	5
71	Investigation of element distribution between components of a salt-lake system by SR-XRF. Journal of Surface Investigation, 2012, 6, 1009-1018.	0.5	4
72	Young «oil site» of the Uzon Caldera as a habitat for unique microbial life. BMC Microbiology, 2020, 20, 349.	3.3	4

#	Article	IF	CITATIONS
73	Diversity and Metabolism of Microbial Communities in a Hypersaline Lake along a Geochemical Gradient. Biology, 2022, 11, 605.	2.8	4
74	Study of the distribution of elements between a cyanobacterial community and a carbonate body of a hot spring via synchrotron XRF analysis. Journal of Surface Investigation, 2012, 6, 446-453.	0.5	3
75	Pd/Sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls. Russian Journal of Organic Chemistry, 2014, 50, 900-901.	0.8	3
76	Formation of Chiral Structures in UV-Initiated Formose Reaction. Doklady Physical Chemistry, 2018, 479, 57-60.	0.9	3
77	Formation of Chiral Structures in Photoinitiated Formose Reaction. High Energy Chemistry, 2018, 52, 108-116.	0.9	3
78	Colloidal Felll, Mnlll, Colll, and CullHydroxides Stabilized by Starch as Catalysts of Water Oxidation Reaction with One Electron Oxidant Ru(bpy)33+. ChemPhysChem, 2019, 20, 410-421.	2.1	3
79	Unidimensional Approximation of the Diffuse Electrical Layer in the Inner Volume of Solid Electrolyte Grains in the Absence of Background Ions. ChemPhysChem, 2020, 21, 1925-1933.	2.1	3
80	Plausible prebiotic synthesis of aldopentoses from simple substrates, glycolaldehyde and formaldehyde. Paleontological Journal, 2013, 47, 1093-1096.	0.5	2
81	Co(II, III) Hydroxides Supported on Zeolite Acting as an Efficient and Robust Catalyst for Catalytic Water Oxidation with Ru(bpy)33+. Topics in Catalysis, 2019, 62, 439-455.	2.8	2
82	Preparation and Structural and Electrochemical Characteristics of a Carbon-Containing Material Based on Aspen Bark Modified with Zinc and Iron Chlorides. Russian Journal of Applied Chemistry, 2020, 93, 672-678.	0.5	2
83	\hat{l}^3 -Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. Catalysis in Industry, 2021, 13, 289-308.	0.7	2
84	Methane Catalytic Peroxide Oxidation Over Fe-Containing Zeolite. Journal of Siberian Federal University: Chemistry, 2016, 9, 394-413.	0.7	2
85	Natural organic matter from the dispersion train of gold sulfide tailings: group composition and fractionation of elements: case study of Ursk Tailings, Kemerovo Region, Siberia. Geochemistry: Exploration, Environment, Analysis, 2021, 21, .	0.9	2
86	Formation of Chiral and Supercoiled Structures in Photoinduced Formose Reaction in the de novo Model. Russian Journal of Physical Chemistry B, 2019, 13, 486-501.	1.3	1
87	Reactor with Swirled Fluidized Bed Electrode for in Situ H2O2 Production and Utilization for Oxidative Treatment of Organic Pollutants. Journal of Siberian Federal University: Chemistry, 2017, 10, 515-527.	0.7	1
88	Experimental and Mathematical Optimization of the \hat{I}^2 -Sitosterol extraction from Mechanically Activated Pine Bark. Journal of Siberian Federal University: Chemistry, 2021, 14, 302-314.	0.7	1
89	Spontaneous Structure Formation in the Products of UV-Initiated Formose Reaction in De-Novo Model. High Energy Chemistry, 2018, 52, 369-372.	0.9	0
90	Acceleration by double activation catalysis and its negation with rising temperature in hydrolysis of cellobiose with phthalic and hydrochloric acids. ChemPhysChem, 2021, , e202100804.	2.1	0