Kenneth L Pitter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6917344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenic <i>ATM</i> Mutations in Cancer and a Genetic Basis for Radiotherapeutic Efficacy. Journal of the National Cancer Institute, 2021, 113, 266-273.	3.0	38
2	TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. British Journal of Cancer, 2021, 125, 576-581.	2.9	26
3	Unbiased in vivo preclinical evaluation of anticancer drugs identifies effective therapy for the treatment of pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30670-30678.	3.3	11
4	Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell, 2020, 38, 229-246.e13.	7.7	210
5	Genomic Determinants of Clinical Outcomes in Rhabdomyosarcoma. Clinical Cancer Research, 2020, 26, 1135-1140.	3.2	33
6	High-dose radiation therapy is needed for intracranial control and long-term survival in patients with non-seminomatous germ cell tumor brain metastases. Journal of Neuro-Oncology, 2019, 142, 523-528.	1.4	4
7	Endoluminal high-dose-rate brachytherapy for locally recurrent or persistent esophageal cancer. Brachytherapy, 2018, 17, 621-627.	0.2	10
8	Increased <i>HOXA5</i> expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes and Development, 2018, 32, 512-523.	2.7	40
9	Treatment of Vulvar Mycosis Fungoides Tumors With Localized Radiotherapy. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, e279-e281.	0.2	8
10	Genetic driver mutations define the expression signature and microenvironmental composition of highâ€grade gliomas. Glia, 2017, 65, 1914-1926.	2.5	50
11	High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe. Theranostics, 2016, 6, 1075-1084.	4.6	96
12	Corticosteroids compromise survival in glioblastoma. Brain, 2016, 139, 1458-1471.	3.7	271
13	Optimization of radiation dosing schedules for proneural glioblastoma. Journal of Mathematical Biology, 2016, 72, 1301-1336.	0.8	26
14	Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Translational Medicine, 2015, 7, 274ra17.	5.8	257
15	Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 2015, 7, 271ra7.	5.8	236
16	In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5248-5253.	3.3	152
17	The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegenerationâ€induced lesions. Glia, 2014, 62, 1595-1607.	2.5	50
18	Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner. ACS Nano, 2014, 8, 9755-9766.	7.3	242

Kenneth L Pitter

#	Article	IF	CITATIONS
19	Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8149-8154.	3.3	80
20	Osteopontin-CD44 Signaling in the Glioma Perivascular Niche Enhances Cancer Stem Cell Phenotypes and Promotes Aggressive Tumor Growth. Cell Stem Cell, 2014, 14, 357-369.	5.2	411
21	Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules. Cell, 2014, 156, 603-616.	13.5	241
22	The EphA2 Receptor Drives Self-Renewal and Tumorigenicity in Stem-like Tumor-Propagating Cells from Human Glioblastomas. Cancer Cell, 2012, 22, 765-780.	7.7	179
23	A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Medicine, 2012, 18, 829-834.	15.2	1,029
24	A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. Journal of Clinical Investigation, 2012, 122, 2018-2031.	3.9	153
25	Astrocyte-Specific Expression Patterns Associated with the PDGF-Induced Glioma Microenvironment. PLoS ONE, 2012, 7, e32453.	1.1	67
26	Identification of Global Alteration of Translational Regulation in Glioma In Vivo. PLoS ONE, 2012, 7, e46965.	1.1	21
27	Perifosine and CCI 779 Co-Operate to Induce Cell Death and Decrease Proliferation in PTEN-Intact and PTEN-Deficient PDGF-Driven Murine Glioblastoma. PLoS ONE, 2011, 6, e14545.	1.1	64
28	BAX activation is initiated at a novel interaction site. Nature, 2008, 455, 1076-1081.	13.7	617
29	Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nature Medicine, 2008, 14, 144-153.	15.2	285
30	Chapter 23 Dissection of the BCLâ€2 Family Signaling Network with Stabilized αâ€Helices of BCLâ€2 Domains. Methods in Enzymology, 2008, 446, 387-408.	0.4	44
31	Chapter 22 Synthesis and Biophysical Characterization of Stabilized αâ€Helices of BCLâ€2 Domains. Methods in Enzymology, 2008, 446, 369-386.	0.4	86
32	Structural Analysis of a BAX-BIM SAHB Complex Reveals a Novel BH3 Interaction Site on BAX for Therapeutic Activation of Apoptosis. Blood, 2008, 112, 300-300.	0.6	0
33	A Stapled BID BH3 Helix Directly Binds and Activates BAX. Molecular Cell, 2006, 24, 199-210.	4.5	347
34	A Membrane-targeted BID BCL-2 Homology 3 Peptide Is Sufficient for High Potency Activation of BAX in Vitro. Journal of Biological Chemistry, 2006, 281, 36999-37008.	1.6	74
35	Anti-Leukemic Potency of Stapled BH3 Helices Correlates with Their Capacity for Bifunctional Activation of Apoptotic Pathways Blood, 2006, 108, 711-711.	0.6	4