Yuji Mikata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6917242/publications.pdf

Version: 2024-02-01

236612 288905 2,112 98 25 40 citations h-index g-index papers 102 102 102 1843 docs citations times ranked citing authors all docs

#	ARTICLE Structure and electrochemical properties of	IF	CITATIONS
1	(1¼-O) (sub>2 (sub>Mn (sub>2 (sub> ((scp>iii (scp>, (scp>iii (scp>)))) and	1.6	9
2	Circular dichroism spectroscopy of catalyst preequilibrium in asymmetric autocatalysis of pyrimidyl alkanol. Chemical Communications, 2021, 57, 11209-11212.	2.2	5
3	N,N,N′,N′ â€Tetrakis(3â€isoquinolylmethyl)′,6â€lutidylenediamine (3â€isoTQLN): A Fluorescent Zn 2+ /Co Sensor as a Hybrid of 2â€Quinolyl/1â€lsoquionolyl Counterparts TQLN/1â€isoTQLN. European Journal of Inorganic Chemistry, 2021, 2021, 1287-1296.		4
4	Sequential Knoevenagel Condensation/Cyclization for the Synthesis of Indene and Benzofulvene Derivatives. ACS Omega, 2021, 6, 28441-28454.	1.6	1
5	A Synthetic Model for the Possible FeIV2(\hat{l} 4-O)2 Core of Methane Monooxygenase Intermediate Q Derived from a Structurally Characterized FeIIIFeIV(\hat{l} 4-O)2 Complex. Inorganic Chemistry, 2021, , .	1.9	1
6	Quinoline- and isoquinoline-derived ligand design on TQEN $(\langle i\rangle N < i\rangle, \langle i\rangle N < i\rangle, \langle i\rangle N < i\rangle \stackrel{?}{\sim} (\langle i\rangle N < i\rangle, \langle i\rangle N < i\rangle \stackrel{?}{\sim} (\langle i\rangle N < i\rangle) \stackrel{?}{\sim} (\langle i\rangle N < i\rangle)$	1.6	13
7	Conversion of (Âμ-OH)2Mn2(II,II) complex to (Âμ-O)2Mn2(III,III) core supported by a quinoxaline-based tetranitrogen ligand. Inorganica Chimica Acta, 2020, 509, 119688.	1.2	4
8	A Tetrakisquinoline Analog of Calcium Indicator Quin2 for Fluorescence Detection of Cd ²⁺ . European Journal of Inorganic Chemistry, 2020, 2020, 757-763.	1.0	8
9	Switching of Fluorescent Zn/Cd Selectivity in ⟨i>N⟨ i>,⟨i>N⟨ i>,⟨i>N⟨ i>,⟨i>N⟨ i>,ci>N⟨ i>,ci>N i>,⟨i>Nacolor (Arganic Chemistry) (Arganic Chemi	1.9	11
10	Methoxy-substituted tetrakisquinoline analogs of EGTA and BAPTA for fluorescence detection of Cd ²⁺ . Dalton Transactions, 2019, 48, 3840-3852.	1.6	11
11	A Basic Study of Photodynamic Therapy with Glucose-Conjugated Chlorin e6 Using Mammary Carcinoma Xenografts. Cancers, 2019, 11, 636.	1.7	21
12	Carbohydrate-Appended TQNPEN [N,N,N \hat{a} \in 2,N \hat{a} \in 2-Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+. European Journal of Inorganic Chemistry, 2018, 2018, 2755-2761.	1.0	7
13	Carbohydrate-Appended TQNPEN [N ,N ,N′ ,N′ -Tetrakis(2-quinolylmethyl)-3-aza-1,5-pentanediamine] Derivatives for Fluorescence Detection of Intracellular Cd2+. European Journal of Inorganic Chemistry, 2018, 2018, 2731-2731.	1.0	O
14	Pyrophosphate-Induced Intramolecular Excimer Formation in Dinuclear Zinc(II) Complexes with Tetrakisquinoline Ligands. Inorganic Chemistry, 2018, 57, 7724-7734.	1.9	16
15	The Crystal Structure of the More-soluble Mosher's Salt. Chemistry Letters, 2017, 46, 550-553.	0.7	2
16	TQOPEN (<i>N,N,N</i> ′ <i>,N</i> ′-Tetrakis(2-quinolylmethyl)-3-oxa-1,5-pentanediamine) Family as Heptadentate Fluorescent Cd ²⁺ Sensors. Inorganic Chemistry, 2017, 56, 7404-7415.	1.9	21
17	Replacement of quinolines with isoquinolines affords target metal ion switching from Zn ²⁺ to Cd ²⁺ in the fluorescent sensor TQLN (N,N,N′,N′-tetrakis(2-quinolylmethyl)-2,6-bis(aminomethyl)pyridine). Dalton Transactions, 2017, 46, 632-637.	1.6	21
18	Substituent Effects on the Crystal Structures of Salts Prepared from (R)-2-Methoxy-2-(1-naphthyl)propanoic Acid and (R)-1-Arylethylamines. Crystals, 2017, 7, 263.	1.0	1

#	Article	IF	CITATIONS
19	Fluorescent Detection of Phosphate Ion via a Tetranuclear Zinc Complex Supported by a Tetrakisquinoline Ligand and \hat{l}_{4} (sub>4-PO ₄ Core. Inorganic Chemistry, 2016, 55, 11440-11446.	1.9	14
20	Fluorescent Detection of Metal Ions and Pyrophosphate with TQEN-Based Quinoline Derivatives. Bulletin of Japan Society of Coordination Chemistry, 2016, 68, 3-15.	0.1	1
21	OFF–ON–OFF fluorescent response of N,N,N′,N′-tetrakis(1-isoquinolylmethyl)-2-hydroxy-1,3-propanediamine (1-isoHTQHPN) toward Zn ^{2+<lsup>. Dalton Transactions, 2016, 45, 7250-7257.}	1.6	14
22	Off–On, Ratiometric, and On–Off Fluorescence Responses of Thioether‣inked Bisquinolines toward Hg ²⁺ and Fe ³⁺ lons. European Journal of Inorganic Chemistry, 2015, 2015, 3769-3780.	1.0	8
23	Characteristic Conformation of Mosher's Amide Elucidated Using the Cambridge Structural Database. Molecules, 2015, 20, 12880-12900.	1.7	5
24	Tris(8-methoxy-2-quinolylmethyl)amine (8-MeOTQA) as a highly fluorescent $Zn < sup > 2 + probe prepared by convenient C < sub > 3 -symmetric tripodal amine synthesis. Dalton Transactions, 2015, 44, 8021-8030.$	1.6	20
25	TQPHEN (N,N,N′,N′-tetrakis(2-quinolylmethyl)-1,2-phenylenediamine) derivatives as highly selective fluorescent probes for Cd ²⁺ . Dalton Transactions, 2015, 44, 104-109.	1.6	25
26	Quinoline-attached triazacyclononane (TACN) derivatives as fluorescent zinc sensors. Dalton Transactions, 2014, 43, 1684-1690.	1.6	32
27	Zinc-specific intramolecular excimer formation in TQEN derivatives: fluorescence and zinc binding properties of TPEN-based hexadentate ligands. Dalton Transactions, 2014, 43, 16377-16386.	1.6	25
28	Isoquinoline-derivatized tris(2-pyridylmethyl)amines as fluorescent zinc sensors with strict Zn2+/Cd2+ selectivity. Dalton Transactions, 2014, 43, 10751.	1.6	32
29	Bis(2-quinolylmethyl)ethylenediaminediacetic acids (BQENDAs), TQEN–EDTA hybrid molecules as fluorescent zinc sensors. Dalton Transactions, 2014, 43, 10013.	1.6	20
30	8-TQEN (N,N,N $\hat{a} \in ^2$,N $\hat{a} \in ^2$ -tetrakis(8-quinolylmethyl)ethylenediamine) analogs as fluorescent cadmium sensors: strategies to enhance Cd2+-induced fluorescence and Cd2+/Zn2+ selectivity. RSC Advances, 2014, 4, 12849.	1.7	19
31	Synthesis, characterization, and biological studies of emissive rhenium–glutamine conjugates. Journal of Biological Inorganic Chemistry, 2013, 18, 831-844.	1.1	18
32	Quantitative Fluorescent Detection of Pyrophosphate with Quinoline-Ligated Dinuclear Zinc Complexes. Inorganic Chemistry, 2013, 52, 10223-10225.	1.9	36
33	Crystal structures of Mosher's salt and ester elucidated by X-ray crystallography. CrystEngComm, 2013, 15, 8088.	1.3	3
34	Heterocyclic bismuth carboxylates based on a diphenyl sulfone scaffold: Synthesis and antifungal activity against Saccharomyces cerevisiae. European Journal of Medicinal Chemistry, 2013, 63, 531-535.	2.6	18
35	Thioether-tethered bisquinoline derivatives as fluorescent probes for mercury(ii) and iron(iii) ions. New Journal of Chemistry, 2013, 37, 2236.	1.4	12
36	Quinoline-based fluorescent zinc sensors with enhanced fluorescence intensity, Zn/Cd selectivity and metal binding affinity by conformational restriction. Dalton Transactions, 2013, 42, 9688.	1.6	53

3

#	Article	IF	Citations
37	Development of Sugar-Based Materials for Biological Devices. Current Topics in Medicinal Chemistry, 2012, 12, 145-157.	1.0	6
38	Zinc-Specific Fluorescent Response of Tris(isoquinolylmethyl)amines (isoTQAs). Inorganic Chemistry, 2012, 51, 1859-1865.	1.9	43
39	Syntheses, Characterization, and Antitumor Activities of Platinum(II) and Palladium(II) Complexes with Sugarâ€Conjugated Triazole Ligands. Chemistry and Biodiversity, 2012, 9, 1903-1915.	1.0	34
40	Quinoline-Based, Glucose-Pendant Fluorescent Zinc Probes. Chemistry and Biodiversity, 2012, 9, 2064-2075.	1.0	12
41	Differentiation of Oxygen Atom Chirality in Copper(II) Complexes with Dipicolylamine-Derived Ligands. European Journal of Inorganic Chemistry, 2012, 2012, 4310-4317.	1.0	4
42	Naphthyl Groups in Chiral Recognition: Structures of Salts and Esters of 2â€Methoxyâ€2â€naphthylpropanoic Acids. Chemistry - an Asian Journal, 2012, 7, 2294-2304.	1.7	5
43	Synthesis of Rhenium(I) Tricarbonyl Complexes with Carbohydrate-Pendant Tridentate Ligands and Their Cellular Uptake. European Journal of Inorganic Chemistry, 2012, 2012, 217-225.	1.0	10
44	Methoxy-substituted isoTQEN family for enhanced fluorescence response toward zinc ion. Dalton Transactions, 2011, 40, 4059.	1.6	31
45	Crystal structures and chiral recognition of the diastereomeric salts prepared from 2-methoxy-2-(1-naphthyl)propanoic acid. CrystEngComm, 2011, 13, 4536.	1.3	19
46	Methoxyquinoline-diethylenetriamine conjugate as a fluorescent zinc sensor. Dalton Transactions, 2011, 40, 4976.	1.6	20
47	Intramolecular ether oxygen coordination in the zinc complexes with dipicolylamine (DPA)-derived ligands. Inorganica Chimica Acta, 2011, 370, 420-426.	1.2	11
48	Control of the Aggregation Properties of Tris(maltohexaose)â€Linked Porphyrins with an Alkyl Chain. European Journal of Organic Chemistry, 2010, 2010, 663-671.	1.2	31
49	Cationic technetium and rhenium complexes with pendant carbohydrates. Applied Radiation and Isotopes, 2010, 68, 1087-1093.	0.7	19
50	Crystal conformations and molecular packing of (S)-2-methoxy-2-(9-phenanthryl)propanoic acid and a diastereomeric amide prepared from (R)-2-methoxy-2-(1-naphthyl)propanoic acid. CrystEngComm, 2010, 12, 2261.	1.3	11
51	Preparation and conformational analysis of C-glycosyl \hat{l}^2 2- and $\hat{l}^2\hat{l}^2$ 2-peptides. Carbohydrate Research, 2009, 344, 613-626.	1.1	10
52	Copper(ii) and zinc(ii) complexes with C-glycoside-pendant dipicolylamine (DPA)-amino acid conjugates. Dalton Transactions, 2009, , 10305.	1.6	7
53	Bisquinoline-based fluorescent zinc sensors. Dalton Transactions, 2009, , 3800.	1.6	62
54	A general route to pendant C-glycosyl 1,2- and 1,3-diamines. Carbohydrate Research, 2008, 343, 941-950.	1.1	8

#	Article	IF	CITATIONS
55	Characteristic conformations and molecular packings in crystal structures of diastereomeric esters prepared from (S)-2-methoxy-2-(1-naphthyl)propanoic acid. Tetrahedron: Asymmetry, 2008, 19, 2693-2698.	1.8	8
56	Isoquinoline-Based TQEN Family as TPEN-Derived Fluorescent Zinc Sensors. Inorganic Chemistry, 2008, 47, 7295-7301.	1.9	86
57	Preparation of <i>C</i> -Glycoside Pendant \hat{I}^2 2- and \hat{I}^2 2,2-Amino Acids. Bulletin of the Chemical Society of Japan, 2008, 81, 606-616.	2.0	7
58	Asymmetric sulfur atom coordination in a copper(ii) dipicolylamine (DPA) complex with a thioglycoside ligand. Dalton Transactions, 2007, , 3705.	1.6	10
59	Quinoline-based tetradendate nitrogen ligands stabilize the bis(Âμ-oxo) dinuclear manganese(iii,iii) core. Dalton Transactions, 2007, , 3330.	1.6	18
60	Characterization of Azulenylphosphine Derivatives. Unexpected Debromination and Its Synthetic Utility in the Preparation of 2-Substituted Azulene. Organometallics, 2007, 26, 2971-2977.	1.1	6
61	Consideration of molecular arrangements in regio- and enantioselective reduction of an NAD model compound controlled by carbonyl oxygen orientation. Organic and Biomolecular Chemistry, 2007, 5, 3834.	1.5	1
62	Control of Intramolecular Ether-Oxygen Coordination in the Crystal Structure of Copper(II) Complexes With Dipicolylamine-Based Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 1143-1149.	1.0	15
63	Facile synthesis of 2-(\hat{l}^2 -C-glucopyranosyl)- \hat{l}^2 -amino acid: a new class of glycopeptide building block. Tetrahedron Letters, 2007, 48, 993-997.	0.7	11
64	Novel Oxygen Chirality Induced by Asymmetric Coordination of an Ether Oxygen Atom to a Metal Center in a Series of Sugar-Pendant Dipicolylamine Copper(II) Complexes. Inorganic Chemistry, 2006, 45, 1543-1551.	1.9	29
65	Methoxy-Substituted TQEN Family of Fluorescent Zinc Sensors. Inorganic Chemistry, 2006, 45, 9262-9268.	1.9	94
66	Novel Carbohydrate-Appended Metal Complexes for Potential Use in Molecular Imaging. Chemistry - A European Journal, 2005, 11, 195-203.	1.7	61
67	A glucosamine–dipicolylamine conjugate of99mTc(i) and186Re(i) for use in imaging and therapy. Dalton Transactions, 2005, , 654-655.	1.6	66
68	Carbohydrate-Appended 2,2â€~-Dipicolylamine Metal Complexes as Potential Imaging Agents. Inorganic Chemistry, 2005, 44, 2698-2705.	1.9	75
69	N,N,Nâ€~,Nâ€~-Tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine (Htqhpn) as a Supporting Ligand for a Low-Valent (Î1⁄4-O)2Tetranuclear Manganese Core. Inorganic Chemistry, 2005, 44, 7268-7270.	1.9	19
70	Tetrakis(2-quinolinylmethyl)ethylenediamine (TQEN) as a new fluorescent sensor for zinc. Dalton Transactions, 2005, , 545.	1.6	98
71	General synthesis of sugar-pendant 1,3-propanediamines containing a C-glycoside linkage. Tetrahedron Letters, 2004, 45, 8785-8788.	0.7	7
72	Synthesis, structural characterization, and antitumor activity of palladium(II) complexes containing a sugar unit. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2533-2536.	1.0	56

#	Article	IF	Citations
73	Control of Oxygen Atom Chirality and Chelate Ring Conformation by Protected/Free Sugar Hydroxyl Groups in Glucose-Pendant Dipicolylamineâ^'Copper(II) Complexes. Inorganic Chemistry, 2004, 43, 4778-4780.	1.9	25
74	Carbonyl Orientation Determines Regio- and Enantioselectivity in 1,2-/1,4-Reduction of an NAD Model Compound. Organic Letters, 2004, 6, 2921-2924.	2.4	17
75	Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-Pendant [60] fullerenes. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3289-3292.	1.0	65
76	Recent Progress of Functional Glycoconjugated Metal Complexes. Bulletin of the Chemical Society of Japan, 2002, 75, 2097-2113.	2.0	33
77	meso-Tetraphenylporphyrin Having Hexa-maltosyl and Decyl Chain as an Amphiphilic Photosensitizer toward Photodynamic Therapy. Chemistry Letters, 2002, 31, 388-389.	0.7	11
78	NAD/NADH Models with Axial/Central Chiralities:Â Superiority of the Quinoline Ring System. Journal of Organic Chemistry, 2001, 66, 1590-1599.	1.7	23
79	Sugar-Pendant Diamines. Journal of Organic Chemistry, 2001, 66, 3783-3789.	1.7	39
80	Unprecedented sugar-dependent in vivo antitumor activity of carbohydrate-pendant cis-diamminedichloroplatinum(II) complexes. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 3045-3047.	1.0	54
81	Highly reactive and stereospecific reaction of quinoline-type NADH model compounds with methyl benzoylformate. Tetrahedron Letters, 2000, 41, 1035-1038.	0.7	28
82	Synthesis and antitumor activities of novel 5-deazaflavin-sialic acid conjugate molecules. Bioorganic and Medicinal Chemistry, 2000, 8, 2027-2035.	1.4	17
83	Acid–base and metal ion-binding properties of diaminopropyl D-glucopyranoside and diaminopropyl D-mannopyranoside compounds in aqueous solution. Dalton Transactions RSC, 2000, , 1325-1333.	2.3	9
84	Purification and Characterization of D-Glucosaminitol Dehydrogenase from Agrobacterium radiobacter. Bioscience, Biotechnology and Biochemistry, 1999, 63, 785-791.	0.6	1
85	General Synthesis of Useful Chelating Reagents Having a Sugar Unit, 1,3-Diamino-2-propyll̂2-D-Glucopyranoside and 1,3-Diamino-2-propyll̂±-D-Mannopyranoside. Chemistry Letters, 1999, 28, 255-256.	0.7	5
86	Feasible Attachment of a Dinuclear Ruthenium Complex to Gold Electrode Surfaces. A Screening Method to Find Functional Electrodes. Electrochemistry, 1999, 67, 1192-1193.	0.6	10
87	Convenient preparation of chiral ethylenediamine linked to d-glucose. Carbohydrate Research, 1998, 313, 175-179.	1.1	10
88	Sugar-dependent photocytotoxic property of tetra- and octa-glycoconjugated tetraphenylporphyrins. Tetrahedron Letters, 1998, 39, 4505-4508.	0.7	57
89	Synthesis and phototoxic property of tetra- and octa-glycoconjugated tetraphenylchlorins. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3543-3548.	1.0	30
90	Synthesis and Reaction of NAD(P)H Model Compounds with Interconversion of Central and Axial Chirality Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 132-141.	0.0	3

Υυji Μικατα

#	Article	IF	CITATIONS
91	NAD(P)+–NAD(P)H Models. 87. Nonsteric Stereochemistry Controlled by a Carbonyl Dipole. Bulletin of the Chemical Society of Japan, 1996, 69, 1679-1685.	2.0	21
92	NAD(P)+–NAD(P)H Models. 86. Nonsteric Stereochemistry in Hydride-Transfer to Sulfinylpyridinium Ion. Bulletin of the Chemical Society of Japan, 1996, 69, 1093-1098.	2.0	7
93			