
Don Klinkenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6917034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of physical distancing measures against COVID-19 on contacts and mixing patterns: repeated cross-sectional surveys, the Netherlands, 2016–17, April 2020 and June 2020. Eurosurveillance, 2021, 26, .	7.0	59
2	Associations Between Measures of Social Distancing and Severe Acute Respiratory Syndrome Coronavirus 2 Seropositivity: A Nationwide Population-based Study in the Netherlands. Clinical Infectious Diseases, 2021, 73, 2318-2321.	5.8	40
3	Measles outbreak in complex emergency: estimating vaccine effectiveness and evaluation of the vaccination campaign in Borno State, Nigeria, 2019. BMC Public Health, 2021, 21, 437.	2.9	9
4	Optimal vaccine allocation for COVID-19 in the Netherlands: A data-driven prioritization. PLoS Computational Biology, 2021, 17, e1009697.	3.2	16
5	How will country-based mitigation measures influence the course of the COVID-19 epidemic?. Lancet, The, 2020, 395, 931-934.	13.7	2,738
6	The roles of migratory and resident birds in local avian influenza infection dynamics. Journal of Applied Ecology, 2018, 55, 2963-2975.	4.0	24
7	Real-time Estimation of Epidemiologic Parameters from Contact Tracing Data During an Emerging Infectious Disease Outbreak. Epidemiology, 2018, 29, 230-236.	2.7	9
8	Quantification of the horizontal transmission of <i>Mycoplasma synoviae</i> in non-vaccinated and MS-H-vaccinated layers. Avian Pathology, 2017, 46, 346-358.	2.0	7
9	Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks. PLoS Computational Biology, 2017, 13, e1005495.	3.2	93
10	An immuno-epidemiological model for Johne's disease in cattle. Veterinary Research, 2015, 46, 69.	3.0	21
11	The long subclinical phase of Mycobacterium avium ssp. paratuberculosis infections explained without adaptive immunity. Veterinary Research, 2015, 46, 63.	3.0	12
12	Evaluating contribution of the cellular and humoral immune responses to the control of shedding of Mycobacterium avium spp. paratuberculosis in cattle. Veterinary Research, 2015, 46, 62.	3.0	27
13	Quantification of parasite shedding and horizontal transmission parameters in <i>Histomonas meleagridis</i> -infected turkeys determined by real-time quantitative PCR. Avian Pathology, 2015, 44, 358-365.	2.0	13
14	Eight challenges in modelling infectious livestock diseases. Epidemics, 2015, 10, 1-5.	3.0	72
15	A cohort study on Actinobacillus pleuropneumoniae colonisation in suckling piglets. Preventive Veterinary Medicine, 2014, 114, 223-230.	1.9	19
16	Transmission of Actinobacillus pleuropneumoniae among weaned piglets on endemically infected farms. Preventive Veterinary Medicine, 2014, 117, 207-214.	1.9	21
17	Simulation study of the mechanisms underlying outbreaks of clinical disease caused by Actinobacillus pleuropneumoniae in finishing pigs. Veterinary Journal, 2014, 202, 99-105.	1.7	21
18	Test and cull of high risk Coxiella burnetii infected pregnant dairy goats is not feasible due to poor test performance. Veterinary Journal, 2014, 200, 343-345.	1.7	11

DON KLINKENBERG

#	Article	IF	CITATIONS
19	Serological diagnosis of avian influenza in poultry: is the haemagglutination inhibition test really the â€~gold standard'?. Influenza and Other Respiratory Viruses, 2013, 7, 257-264.	3.4	35
20	Dairy goat demography and Q fever infection dynamics. Veterinary Research, 2013, 44, 28.	3.0	16
21	Association between transmission rate and disease severity for Actinobacillus pleuropneumoniae infection in pigs. Veterinary Research, 2013, 44, 2.	3.0	20
22	Transmission rate of African swine fever virus under experimental conditions. Veterinary Microbiology, 2013, 165, 296-304.	1.9	67
23	Effect of Spatial Separation of Pigs on Spread of Streptococcus suis Serotype 9. PLoS ONE, 2013, 8, e61339.	2.5	33
24	How selection forces dictate the variant surface antigens used by malaria parasites. Journal of the Royal Society Interface, 2012, 9, 246-260.	3.4	11
25	Detection of Actinobacillus pleuropneumoniae in pigs by real-time quantitative PCR for the apxIVA gene. Veterinary Journal, 2012, 193, 557-560.	1.7	25
26	Evaluating Surveillance Strategies for the Early Detection of Low Pathogenicity Avian Influenza Infections. PLoS ONE, 2012, 7, e35956.	2.5	19
27	Scaling from challenge experiments to the field: Quantifying the impact of vaccination on the transmission of bluetongue virus serotype 8. Preventive Veterinary Medicine, 2012, 105, 297-308.	1.9	20
28	Design and Results of an Intensive Monitoring Programme for Avian Influenza in Meatâ€Type Turkey Flocks During Four Epidemics in Northern Italy. Zoonoses and Public Health, 2011, 58, 244-251.	2.2	8
29	Transmission Dynamics of Low Pathogenicity Avian Influenza Infections in Turkey Flocks. PLoS ONE, 2011, 6, e26935.	2.5	26
30	<i>Salmonella</i> Enteritidis Surveillance by Egg Immunology: Impact of the Sampling Scheme on the Release of Contaminated Table Eggs. Risk Analysis, 2011, 31, 1260-1270.	2.7	9
31	A comparison of transmission characteristics of Salmonella enterica serovar Enteritidis between pair-housed and group-housed laying hens. Veterinary Research, 2011, 42, 40.	3.0	9
32	Modelling effectiveness of herd level vaccination against Q fever in dairy cattle. Veterinary Research, 2011, 42, 68.	3.0	28
33	The correlation between infectivity and incubation period of measles, estimated from households with two cases. Journal of Theoretical Biology, 2011, 284, 52-60.	1.7	61
34	Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis. Journal of Theoretical Biology, 2011, 284, 130-141.	1.7	24
35	Influenza Transmission in Households During the 1918 Pandemic. American Journal of Epidemiology, 2011, 174, 505-514.	3.4	83
36	Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives. PLoS Computational Biology, 2011, 7, e1001076.	3.2	92

DON KLINKENBERG

#	Article	IF	CITATIONS
37	Effects of Infection-Induced Migration Delays on the Epidemiology of Avian Influenza in Wild Mallard Populations. PLoS ONE, 2011, 6, e26118.	2.5	28
38	Evaluation of suspension array analysis for detection of egg yolk antibodies against Salmonella Enteritidis. Preventive Veterinary Medicine, 2010, 95, 137-143.	1.9	7
39	Eimeria acervulina: The influence of inoculation dose on transmission between broiler chickens. Experimental Parasitology, 2010, 125, 286-296.	1.2	10
40	Medium chain fatty acid feed supplementation reduces the probability of Campylobacter jejuni colonization in broilers. Veterinary Microbiology, 2010, 143, 314-318.	1.9	42
41	Effect of Eimeria acervulina infection history on the immune response and transmission in broilers. Veterinary Parasitology, 2010, 173, 184-192.	1.8	8
42	Early Epidemiological Assessment of the Virulence of Emerging Infectious Diseases: A Case Study of an Influenza Pandemic. PLoS ONE, 2009, 4, e6852.	2.5	117
43	Quantifying Transmission of <i>Campylobacter jejuni</i> in Commercial Broiler Flocks. Applied and Environmental Microbiology, 2009, 75, 625-628.	3.1	79
44	Quantification of Horizontal Transmission of <i>Salmonella enterica</i> Serovar Enteritidis Bacteria in Pair-Housed Groups of Laying Hens. Applied and Environmental Microbiology, 2009, 75, 6361-6366.	3.1	42
45	Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens. PLoS Pathogens, 2009, 5, e1000281.	4.7	103
46	Self-Interest versus Group-Interest in Antiviral Control. PLoS ONE, 2008, 3, e1558.	2.5	16
47	Detecting Emerging Transmissibility of Avian Influenza Virus in Human Households. PLoS Computational Biology, 2007, 3, e145.	3.2	42
48	A model for the dynamics of a protozoan parasite within and between successive host populations. Parasitology, 2007, 134, 949-958.	1.5	11
49	Effects of heterogeneity in infection-exposure history and immunity on the dynamics of a protozoan parasite. Journal of the Royal Society Interface, 2007, 4, 841-849.	3.4	7
50	Transmission of <i>Salmonella</i> in dairy herds quantified in the endemic situation. Veterinary Research, 2007, 38, 861-869.	3.0	14
51	The effect of a live vaccine on the horizontal transmission ofMycoplasma gallisepticum. Avian Pathology, 2006, 35, 359-366.	2.0	27
52	The Effectiveness of Contact Tracing in Emerging Epidemics. PLoS ONE, 2006, 1, e12.	2.5	215
53	The effectiveness of classical swine fever surveillance programmes in The Netherlands. Preventive Veterinary Medicine, 2005, 67, 19-37.	1.9	44
54	An experimental model to quantify horizontal transmission ofMycoplasma gallisepticum. Avian Pathology, 2005, 34, 355-361.	2.0	28

DON KLINKENBERG

#	Article	IF	CITATIONS
55	A simple model for the within-host dynamics of a protozoan parasite. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 593-600.	2.6	7
56	Quantifying Transmission of Campylobacter spp. among Broilers. Applied and Environmental Microbiology, 2005, 71, 5765-5770.	3.1	62
57	Quantification of the effect of control strategies on classical swine fever epidemics. Mathematical Biosciences, 2003, 186, 145-173.	1.9	28
58	Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments. Epidemiology and Infection, 2002, 128, 293-299.	2.1	76
59	Influence of maternal antibodies on efficacy of a subunit vaccine: transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age. Vaccine, 2002, 20, 3005-3013.	3.8	36
60	Spatial and stochastic simulation to compare two emergency-vaccination strategies with a marker vaccine in the 1997/1998 Dutch Classical Swine Fever epidemic. Preventive Veterinary Medicine, 2001, 48, 177-200.	1.9	45
61	Classical swine fever (CSF) marker vaccine. Veterinary Microbiology, 2001, 83, 107-120.	1.9	70
62	A Mathematical Model for the Intracellular Circadian Rhythm Generator. Journal of Neuroscience, 1999, 19, 40-47.	3.6	151