
Inma Ponte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6916544/publications.pdf Version: 2024-02-01

INMA PONTE

#	Article	IF	CITATIONS
1	Towards understanding the Regulation of Histone H1 Somatic Subtypes with OMICs. Journal of Molecular Biology, 2021, 433, 166734.	2.0	3
2	A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study. Journal of Biomolecular NMR, 2018, 72, 139-148.	1.6	12
3	Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma, 2017, 126, 83-91.	1.0	25
4	Complex Evolutionary History of the Mammalian Histone H1.1–H1.5 Gene Family. Molecular Biology and Evolution, 2017, 34, msw241.	3.5	20
5	The subtype-specific role of histone H1.0 in cancer cell differentiation and intratumor heterogeneity. Translational Cancer Research, 2017, 6, S414-S417.	0.4	3
6	Interplay between histone H1 structure and function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 444-454.	0.9	36
7	Histone H1 Favors Folding and Parallel Fibrillar Aggregation of the 1–42 Amyloid-β Peptide. Langmuir, 2015, 31, 6782-6790.	1.6	13
8	Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation. Nucleic Acids Research, 2015, 43, 4463-4476.	6.5	35
9	Identification of novel post-translational modifications in linker histones from chicken erythrocytes. Journal of Proteomics, 2015, 113, 162-177.	1.2	28
10	Sequence conservation of linker histones between chicken and mammalian species. Data in Brief, 2014, 1, 60-64.	0.5	6
11	Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. Journal of Structural Biology, 2012, 180, 101-109.	1.3	12
12	Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study. BMC Structural Biology, 2011, 11, 14.	2.3	28
13	An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: A CD and NMR study. Protein Science, 2009, 11, 214-220.	3.1	28
14	Role of Charge Neutralization in the Folding of the Carboxy-Terminal Domain of Histone H1. Journal of Physical Chemistry B, 2009, 113, 12061-12066.	1.2	25
15	Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Research, 2008, 36, 4719-4726.	6.5	71
16	Macromolecular Crowding Induces a Molten Globule State in the C-Terminal Domain of Histone H1. Biophysical Journal, 2007, 93, 2170-2177.	0.2	51
17	Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biology, 2007, 5, 22.	1.7	68
18	DNA-induced Secondary Structure of the Carboxyl-terminal Domain of Histone H1. Journal of Biological Chemistry, 2005, 280, 32141-32147.	1.6	86

Ινμα Ροντε

#	Article	IF	CITATIONS
19	The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain. Nucleic Acids Research, 2004, 32, 6111-6119.	6.5	34
20	Sequence Complexity of Histone H1 Subtypes. Molecular Biology and Evolution, 2003, 20, 371-380.	3.5	35
21	Sequence and analysis of the 5′ flanking and 5′ untranslated regions of the rat N-methyl-d-aspartate receptor 2A gene. Gene, 2002, 295, 135-142.	1.0	13
22	DNA-induced α-Helical Structure in the NH2-terminal Domain of Histone H1. Journal of Biological Chemistry, 2001, 276, 46429-46435.	1.6	57
23	Induction of Secondary Structure in a COOH-terminal Peptide of Histone H1 by Interaction with the DNA. Journal of Biological Chemistry, 2001, 276, 30898-30903.	1.6	63
24	A helixâ€ŧurn motif in the Câ€ŧerminal domain of histone H1. Protein Science, 2000, 9, 627-636.	3.1	38
25	Isolation and characterization of a 28-kDa HMG-like protein that binds to A/T-rich distal promoter regions of zein genes. Plant Science, 1998, 135, 31-38.	1.7	3
26	Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes. Molecular Biology and Evolution, 1998, 15, 702-708.	3.5	72
27	Sequence simplicity and evolution of the 3′ untranslated region of the histone H1° Gene. Journal of Molecular Evolution, 1996, 43, 125-134.	0.8	4
28	Cloning and analysis of the coding region of the histone H1° -encoding gene from rat PC12 cells. Gene, 1995, 166, 313-316.	1.0	5
29	Narrow A/T-rich zones present at the distal 5′-flanking sequences of the zein genes Zc1 and Zc2 bind a unique 30 kDa HMG-like protein. Plant Molecular Biology, 1994, 26, 1893-1906.	2.0	7
30	Transcriptional activation of Histone H1º during neuronal terminal differentiation. Developmental Brain Research, 1994, 80, 35-44.	2.1	10
31	DNA sequence of the gene encoding the Zc1 protein fromZea maysW64 A. Nucleic Acids Research, 1990, 18, 6425-6425.	6.5	12
32	Sequence analysis of a genomic clone encoding a Zc2 protein fromZea maysW64 A. Nucleic Acids Research, 1990, 18, 6426-6426.	6.5	21